

Karnataka State Akkamahadevi Women's University Vijayapura

Department of Physics

M.Sc. Physics

Program Outcomes, Program Specific Outcomes and Course Outcomes

Department of Physics

Programmme Outcomes (POs) for M.Sc. Physics Programmme					
DO1	W	Capable of demonstrating comprehensive knowledge in			
POI	Kilowledge	Physics gained during course of study			
	Dagaarah	Capability to ask relevant/appropriate questions for			
PO2	Research	identifying, formulating and analyzing the research			
	Aptitude	problems and to draw conclusion from the analysis			
		Ability to communicate effectively on general and			
PO3	Communication	scientific topics with the scientific community and with			
		society at large			
		Inculcate the scientific temperament and capability of			
PO4	Problem Solving	applying knowledge to solve scientific and solve real			
		time problems			
PO5	Individual and	Capable to learn and work effectively as an individual,			
100	Toom Work	and as a member or leader in diverse teams, in			
		multidisciplinary environment.			
		Ability of critical thinking, analytical reasoning and			
PO6	Investigation of	research based knowledge including design of			
	Problems	experiments, analysis and interpretation of data to			
		provide conclusions.			
PO7	Modern tool usage	Ability to use and learn techniques, skills and modern			
10/	0	tools for scientific practices			
DOG	Science and Society	Professionally trained to apply reasoning to assess the			
PO8		different issues related to society and the consequent			
	•	responsibilities relevant to the professional scientific			
		practices			
DOA	Environment and Sustainibility	Possess adequate knowledge required for sustainable			
PO9		development keeping in view of environmental impacts			
		and contemporary issues.			
DO10		Aptitude to apply both analytical and computational			
POIO	Life-Long Learning	knowledge and skills, that are necessary for participating			
		in learning activities throughout life			
		Capability to identify and apply ethical issues related to			
PO11	Ethics	one's work, avoid unethical behavior such as fabrication			
		of data, committing plagiarism and unbiased truthful			
		actions in an aspects of work			
		Ability to demonstrate knowledge and understanding of			
PO12	Research Project	the scientific principles and apply these to manage			
	Monocoment	research projects			
	management	research projects			
1					

	Programmme Specific Outcomes (PSOs) for M.Sc. Physics Programmme
PSO1	Acquire an in-depth understanding and knowledge of the core areas of Physics encompassing mathematical physics, classical mechanics, quantum mechanics, electrodynamics, and statistical mechanics for explicating physical phenomena covering wide length and time scales.
PSO2	Be capable of applying the core physical laws to unravel a multitude of physical properties, processes, and effects involving radiation, nuclei, atoms, molecules, and bulk forms of matter
PSO3	Develop hands-on skills for carrying out elementary as well as advanced experiments in different sub-fields of Physics viz. condensed matter physics, nuclear physics, particle physics, materials science, computational physics & electronics, along with enhancing their understanding of physical concepts and theories.
PSO4	Attain abilities of critical thinking, problem mapping & solving using fundamental principles of Physics, systematic analysis & interpretation of results, and unambiguous oral & writing/presentation skills.
PSO5	Have robust foundation in basic and practical aspects of Physics enabling them to venture into research in front-line areas of physical sciences, and career as Physics teachers and scientists.

Mapping of Courses with Programme Outcomes(POs)													
Courses		Programme Outcomes											
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
						I Ser	nester	•					
PHT-1.1		X			Χ				X		Χ		
PHT-1.2		Χ			Χ					Χ	Χ		
PHT-1.3		Χ			Χ				X	Χ	Χ		
PHT-1.4		Χ			Χ						Χ		
DCT 1 5	(a)	X			X		Χ	Χ			Χ	Χ	
PST-1.5	(b)	Χ			Χ		Χ	Χ			Χ	Χ	
PHP-1.6		Χ	Χ		Χ	Χ	Χ	Χ			Χ	Χ	X
POE –1.7	7	Χ		X					X	Χ	Χ	X	
			•			II Se	meste	r	•				
PHT-2.1		X			Χ					X	X		
PHT-2.2		Χ			X						X		
PHT-2.3		X			Χ				X	Χ	X		
PHT-2.4		X			Χ				X	Χ	X		
	(a)	Χ			Χ		Χ	Χ	X		X		
PST-2.5	(b)	Χ			Χ		Χ	Χ	X		X		
PHP-2.6		Χ	Χ		Χ	X	Χ	Χ			X	X	X
POE-2.7		Χ		X					X	Χ	X		
						III Se	emeste	er					
PHT-3.1		Χ			Χ				X		X		
PHT-3.2		Χ			X				X		X		1
PHT-3.3		Χ			Χ				X		X		
	(a)	Χ			X		Χ	Χ	X	Χ	X		1
PST-3.4	(b)	Χ			Χ		Χ	Χ	X	Χ	X		
	(a)	Χ	X		X	X	X	Χ	X	X	X	X	X
PSP-3.5	(b)	Χ	Χ		X	X	Χ	Χ	X	Χ	X	Χ	X
POE-3.6		Χ		X					X	Χ	X		
IV Semester													
	(a)	Χ			Χ		X	Χ	Χ	Χ	X		
PHT-4.1	(b)	Χ			X		Χ	Χ	X	Χ	X		1
	(a)	X			Χ		X	Χ	X	Χ	X		1
PHT-4.2	(b)	Χ			X		X	Χ	X	X	X		1
	(a)	Χ		X			X	Χ	X	X	X		1
PST-4.3	(b)	Χ			Χ	X	Χ	Χ	X		X	X	X
PHP-4.4		Χ	Χ	X	Χ	Χ	Χ	Χ	X	Χ	X	X	X
POE-4.5		X		X	1			X	X	X	X		

COURSE		OUTCOMES			
		After completion of these courses students should be able			
		to :			
		Semester I			
PHT-1.1	Classical Mechanics	 CO1: Learn basic ideas of Newtonian Mechanics. CO2: Understand the Lagrangian approach in classical mechanics and solve problems using it. CO3: Gain the knowledge of motion in central force field CO4: Study Kinematics and Dynamics of rigid body in 			
		detail and ideas regarding Euler's equations of motion CO5: Understand the Hamiltonian approach in classical mechanics and solve problems using it CO6: Get knowledge of canonical transformation and Poisson's bracket			
PHT-1.2	Mathematical Methods of Physics	 CO1: Learn about special type of matrices that are relevant in Physics and then learn about tensors. CO2: Understand the methods to ordinary and partial differential equations and then learn different ways of solving them. CO3: Analyse the wide range of special functions and their use in solving complex Physics problems. CO4: Analyse the various integral transforms of different series and their applications in Physics. 			
PHT-1.3	Atomic, Molecular and Optical Physics (General)	 CO1: The students will have an understanding of quantum behavior of atoms in external electric and magnetic fields; CO2: Describe the spectra of single and multiple electron atoms including fine- and hyperfine structure of hydrogen like atoms, different types of coupling such as L-S and J-J couplings. CO3: Explain the effect of electric and magnetic field on the atomic spectrum CO4: Analyse the spectra of diatomic molecules such as electronic, rotational, vibrational spectra and Raman spectroscopy 			
PHT-1.4	Basic Electronics	CO1: Understand the construction, operation and applications of diodes, BJT and FET. CO2: The students will have an understanding of the concepts of operational amplifier and its applications. CO3: The students will be able to use techniques for analyzing analog and digital electronic circuits			
PST-1.5	a) Instrumentation	 CO1: The students will have an understanding of different types of instruments and errors occurring during measurement. CO2: Understand production and measurement of vacuum. CO3:Understand production and measurement of low and high temperatures CO4:Understand the nuclear spectroscopy 			
	b) Astrophysics	CO1: Understand the basic concepts of astrophysics. CO2: Apply principles of physics to astronomical objects.			
PHP- 1.6 Practical I	General Physics and Basic Electronics Lab	CO1: Educate the Basics of Instrumentation, DataAcquisition And Interpretation of ResultsCO2: Have a deep knowledge of fundamentals of optics.CO3:Apply the knowledge to understand the working of			

Course Outcomes: M. Sc Physics

		amplifiers, oscillators and multivibrators
		CO4:Understand analog and digital circuits
POE-1.7	Physics for All	CO1: Explain how Physics applies to phenomena in the
		world around them.
		CO2: Recognizing how and when Physical laws relevant
		to their field.
		CO3: Recognizing how and when Physics methods and
		principles can help in facing challenges to overcome
		weakness in their problems.
		CO4: Evaluating the limitations of their solutions
		CO5: Critically access their current state of knowledge and
		expertise to develop, implement and refine a plan in order
		to acquire new knowledge for specific goals and in pursuit
		of new intellectual interests.
		CO6: Participate effectively in multidisciplinary and /or
		interdisciplinary teams.
		CO7: Communicate effectively via oral, visual and
		written format to achieve diverse audiences.
		CO8: Articulate how one's own developing skills can be
		used in constructive community service or
		engagement that recognizes the potential impact on local
		and global issues including environmental impact and
		sustainability.
		Semester II
PHT-2.1	Quantum Mechanics - I	CO1: To understand inadequacy of classical mechanics
		and origin of Quantum mechanics.
		CO2: To provide an understanding of the formalism and
		language of non-relativistic quantum mechanics.
		CO3: The students will be able to formulate and solve
		problems in quantum mechanics using Schrödinger and
		Dirac representation.
		CO4: And to understand the concepts of time-independent
		situations
		CO5: The students will be familiar with various
		approximation methods applied to atomic nuclear and
		solid-state physics
		CO6: To understand the basics of scattering theory
PHT-2.2	Mathematical and	CO1: Elaborate the understanding of group theory.
	Computational Methods of	CO2: Elaborate the understanding of complex variables.
	Physics	CO3: Identify a range of numerical methods that are
	y	essential for solving problems in Physics
		CO4: Learn Python-programming technique to solve
		problems in Physics.
PHT-2.3	Nuclear Physics (General)	CO1: Acquire basic knowledge about nuclear properties
		such as mass, spin, radius, binding energy etc.
		CO2: understand the features of nuclear forces, exchange
		force and Yukawa's meson theory.
		CO3: develop the understanding of various nuclear
		reactions and models
		CO4: learn the decay process and interaction of radiation
		with matter.
		CO5: learn about the concept nuclear energy, elementary
		particles and conservation laws.
PHT-2.4	Condensed Matter Physics	CO1: understand the concepts of the crystal classes and

	(General)	symmetries
		CO2: calculate the Braggs conditions for X-ray diffraction
		in crystals.
		CO3: create understanding crystal binding and lattice
		vibrational properties of solid state systems.
		CO4: learn the basics of the Band theory of solids
		Magnetic behaviour materials and defects in solids
		CO5: gain basic knowledge of semiconductors
DST 2.5	a)Physics of Nanomaterials	CO1:Understand the basics of nanotechnology
151-2.5	a) hysics of ivalionaterials	CO2: Understand the Quantum confinement offects
		CO2. To learn various annuaches for the synthesis and
		cos. To learn various approaches for the synthesis and
		labilication of hanomaterials, hanostructures and hanoscale
		CO4. To have a size a deeper denote de of
		CO4: 10 learn various advanced methods of
		characterization techniques for the in depth
		characterization of materials at nanolevel.
	b) Physics of Laser and Laser	CO1: Characteristics of the laser systems
	Applications	CO2: Know about the basic working principal of different
		kind of laser systems and use of it in practical applications.
		CO3:Understand the applications of LASER in various
		fields
PHP-2.6	General Physics and	CO1: Have a deep knowledge of fundamentals of optics.
Practical	Numerical Methods using	CO2: Understand the fundamentals of Python
II	Python Programming Lab	programming
		CO3: Write Python program for simple applications in
		physics
POE-2.7	Elements of Modern Physics	CO1: Understand the meaning of relativity, frames of
		reference and postulates of theory of relativity and mass
		energy relation.
		CO2: Understand and explain the differences between
		classical and quantum mechanics.
		CO3:Explain different Laser used and make a comparison
		between them
		CO4: Know the Einstein's coefficients, types of pumping,
		some applications
		CO5: Condensed matter crystal Structure, Unit cell,
		Bonding in solids, Band theory of solids
		CO6: Learn the super conductivity phenomenon
		CO7: Identify properties of the nucleus and other sub-
		atomic particles
		CO8: Describe theories explaining the structure of
		nucleus and models.
	1	Semester III
PHT-3.1	Ouantum Mechanics -II	CO1: To understand the concepts of the time-dependent
		perturbation theory and their applications to physical
		situations.
		CO2: The students will be able to grash the concents of
		identical particles, spin and angular momentum as well as
		their quantization and addition rules and symmetry
		nrinciples
		CO3: To apply the concepts of relativity to Quantum
		mechanics and obtain relativistic wave equations and to
		around the concents of anin origing naturally from the Direct
		grasp the concepts of spin arising naturally from the Dirac
		equation.

		CO4: Understand quantization of wave fields.
РНТ-3.2	Statistical Mechanics	CO4: Understand quantization of wave fields. CO1: Explain statistical physics and thermodynamics as logical consequences of the postulates of statistical mechanics and Grasp the basis of ensemble approach in statistical mechanics to a range of situations CO2: work out equations of state and thermodynamic potentials CO3:describe the features and examples of Maxwell- Boltzmann, Bose-Einstein and Fermi Dirac statistics CO4:understand fluctuations in various ensembles CO5:to model Brownian motion and random walk problem
РНТ-3.3	Electrodynamics	CO1: Understand the laws of electrostatics and magnetostatics CO2: Use Maxwell equations in analysing the electromagnetic field due to time varying charge and current distribution. CO3: Understand the covariant formulation of electrodynamics and the concept of retarded time for charges undergoing acceleration.
PST-3.4	a) Nuclear Physics – I (Special)	 CO1: Understand the applications of Particle accelerators CO2: Learn Advanced concepts of Nuclear forces CO3: Nucleon- Nucleon interactions at low energy and high energy. CO4: Analyze the statistics of of nuclear particles With the help of Multi channel analyzer.
	b) Condensed Matter Physics – I (Special)	CO1: To describe the different crystal structuresCO2: Shall be able to draw the energy bands, Brillouinzones and Fermi surface.CO3: To formulate basic models for quantization of latticevibrations and elastic properties of solidsCO4: Understand electrical transport in metals andsemiconductors.
PSP-3.5	Specialization Lab	
Practical III	a) Nuclear Physics Lab (Special)	CO1: Apply the theory to find the solutions of practical problems.CO2: various simulation techniques which can be used in future by students to analyze the data.CO3: how to handle nuclear materials and nuclear safely management
	b) Condensed Matter Physics Lab (Special)	 CO1: Understand advanced concepts and mathematical methods of Condensed Matter physics. CO2: Practice problem solving by using selected problems in Condensed Matter physics. CO3: Explore important connections between theory, experiment, and current applications. CO4: Analyze the problem studied through analytical calculation
POE-3.6	Biophysics	CO1: Understand the interdisciplinary applications of Physics to life sciences.
		Semester IV
PHT-4.1	a) Nuclear Physics – II (Special)	CO1:Advanced topics of Nuclear fission, Gamma decay and elementary particle physics CO2:Understand the construction and working of Nuclear reactors

	b) Condensed Matter	CO1: To know the magnetic properties of materials
	Physics – II (Special)	CO2: Study the ubiquity of dielectrics.
		CO3: Understand ferroelectrics.
PHT-4.2	a) Nuclear Physics – III	CO1: Understand partial wave and perturbation approach
	(Special)	of nuclear reactions.
		CO2: Learn the various spectroscopic techniques in
		nuclear physics.
		CO3: Understand the various nuclear models like shell
		model, collective model, rotational model and Nilsson
		model.
	b) Condensed Matter	CO1: To explain effect of doping in semiconductors.
	Physics – III (Special)	CO2: To explain the transport properties, Magnetic field
		effects and optical properties of semiconductors.
		CO3: Understand fabrication of semiconductor devices
		CO4: Study low dimensional semiconductor structures
		CO5: Understand thin film preparation methods and
		thickness measurements of thin films.
		CO6:Study the different soft materials
PST-4.3	a) Material Science	CO1: Study structure of solids
		CO2: Understand the various techniques involved in
		Crystal Growth.
		CO3: The basic concepts on Solid phases and phase
		diagrams.
		CO4: Understand the phase transformations and diffusion
		solids.
		CO5: Study different magnetic materials
	b) MATLAB and	CO1: Understand Basics of MATLAB coding.
	LabVIEW	CO2: Write the program for a given problem in MATLAB
		coding.
		CO3: Simulate various electric circuits in MATLAB
		simulation tool
		CO4:Understand the data acquisition by interfacing with
		LabVIEW
PHP-4.4	Project Work	CO1: Understand the importance of experimental and
		theoretical analysis.
		CO2: Develop a Scientific approach in solving problems
		related to physics.
		CO3: Educate and train the students to write scientific
DOE 15	A transmission C	papers.
POE-4.5	Atmospheric Science	CO2: Understand dynamics of meteorology
		CO2: Understand dynamics of monsoon
		CO3: Develop numerical methods for atmospheric models
		CO4: Understand working of atmospheric instrumentation
		systems.