Progr	Program Outcome		
am			
Name			
MCA	• Ability to apply knowledge of Mathematics, Computer Science and Management in practice.		
	 Ability to identify, analyze, formulate and develop Computer Applications 		
	 Ability to work with modern computing tools and techniques and use them with appropriate skills 		
	 Ability to devise and conduct experiments, interpret data and provide well informed conclusions 		
	 Ability to understand the impact of system solutions in a contemporary, global, economic, environmental, and societal context forsu stainable development. 		
	 Ability to design a computing system to meet desired needs within realistic constraints of an Industry / Organization / Institution 		
	 Ability to function professionally with ethical responsibility as an individual as well as in multi disciplinary teams with positive attitude 		
	Program Specific Outcome		
	1. Apply the theoretical concepts of Computer Science and Practical knowledge in analysis,		
	design, and development of Computing systems and applications (software applications)		
	2. Work as a socially responsible professional by applying Computer Science Principles and		
	Management practices		
M.Sc.	Ability to apply knowledge of Mathematics, Computer Science and Management in practice		
	Ability to identify, analyze, formulate and develop Computer Applications		
	 Ability to work with modern computing tools and techniques and use them with appropriate skills 		
	 Ability to devise and conduct experiments, interpret data and provide well informed conclusions. 		
	 AbilitytodesignacomputingsystemtomeetdesiredneedswithinrealisticconstraintsofanIndustr y/Organization/Institution 		
	 Abilitytofunctionprofessionallywithethicalresponsibilityasanindividualaswellasinmultidiscipli naryteamswithpositiveattitude 		
	Program Specific Outcomes		
	1. Apply the theoretical concepts of Computer Science and Practical knowledge in		
	analysis, design, and development of Computing systems and applications (software		
	applications)		
	2. Work as a socially responsible professional by applying Computer Science Principles and		
	Management practices		

Course	Subject	Course Outcome	
Name			
MCA	First Semester		
	Digital Logic	 Students completing this course will able to perform the conversion 	
	and	among different number systems, familiar with basic logic gates, build	
	Computer	simple logic circuits using basic gates.	
	Design	• Students will be able to design combinational and sequential circuits using	
		discrete components.	
		Use basic structural Hardware Description Languages to implement digital	
		circuits, design and conduct experiments related to digital systems and to	
		analyze their outcomes.	
		 Students will gain understanding of basic organization of computer 	
		system.	
	Operating	 Students will be able explain the structure of OS and basic architectural 	
	System	components involved in OS design.	
	Principles	 Able to analyze and design the applications to run in parallel either using 	
	with UNIX	process orthread models of OS.	
		Analyzethevariousdeviceandresourcemanagementtechniquesintimeshar	
		inganddistributedenvironment.	
		Understand the Mutual exclusion, Deadlock detection and	
		agreement protocols of Distributed operating system. • Interpret	
		the mechanisms adopted for file sharing in distributed Applications.	
		Conceptualize the components involved in designing acon	
		temporary OS.	
	Data	• Students completing this course will be able to describe the properties,	
	Structure	Interfaces, and behaviors of basic abstract data types list, stack and queue.	
	using C++	will have ability to implement and analyze various searching techniques.	
	Drastical Jak	Will have ability to implement and analyze text processing techniques.	
	Practical lab-	Hands-on experiments to study logic gates and realization of OR, AND, NOT AND YOR Experiments using universal gates	
		NOT AND XOR FUNCTIONS USING UNIVERSAL gales.	
	LUBIC LAD	 Onderstand the relationships between combination logic and boolean algebra, and between sequential logic and finite state machines; 	
		Ability to design and implement combinational circuits like half adder/full	
		adder half sub tractor/full sub tractor code converters, comparators	
MUX/DEMUX c).		MUX/DEMUX c)	
		Design and implement sequential circuits like flip- flops, counters and shift	
		registers d) Study of 8-bit DAC and 8-bit ADC	
	Practical lab-	 Students understand OOPs concepts: use them to represent the data 	
	2 Data	structure.	
	Structure Lab	• Ability to code sorting methods, including selection, merge sort, heap sort	
		and Quick sort.	
		• Understand dynamic memory management techniques using pointers,	
		constructors, destructors, etc	
		• Ability to implement Stack ADT and Queue ADT using array and linked-list	
		implementation in C++. • Choose appropriate data structures to represent	
		data items in real world problems	
	Discrete	• Students completing this course will have understanding of the	

Mathematica	computational and algorithmic aspects of Sets, Relations, Mathematical		
I Structures	Logic, Boolean algebra, Graphs, Trees and Algebraic Structure in the field of		
	Computer sciences and its applications.		
	 Able to apply them in problem solving. 		
Probability	 Understand concepts of probability theory and statistical inference in 		
and	order to solve applied problems.		
Statistical	• Familiarity with basic rules of probability and will be able to use them in		
Methods	modeling uncertainty in obtaining and recording data.		
	 Understand the logic of statistical inference and will be able to apply 		
	common inferential procedures		
Numerical	• Apply Numerical analysis which has enormous application in the field of		
Methods	Computer Science and Engineering.		
	 Familiar with finite precision computation. 		
	 Familiar with numerical solutions of nonlinear equations in a single 		
	variable.		
	• Familiar with numerical integration and differentiation, numerical solution		
	of ordinary differential equations.		
	 Familiar with calculation and interpretation of errors in numerical 		
	method.		
Fundamental	 To introduce the fundamental concepts of computers and computing 		
s of	environment.		
Programming	 To acquire the basic knowledge of algorithm design and problem-solving 		
	using c.		
	 To understand the concept of object-oriented programming and acquiring 		
	skills for problem solving using OOPs syntax.		
Computer	 Upon completion of this course, the student will bedescribing the 		
Fundamental	components of a typical computer and explain the characteristics of each of		
s(OE)	them. • Underst and the working of Windows operating system and the		
	services it provides. • Understand the importance of computers in business		
	and society. • Describe various types of networks network standards and		
	communication software.		
Second Semes	ter		
Database	• Describe the fundamental elements of relational database management		
Management	systems • Explain the basic concepts of relational data model, entity-		
System	relationship model, relational database design, relational algebra and SQL.		
	Design ER-models to represent simple database application scenarios •		
	Convert the ER-model to relational tables, populate relational database and		
	formulate SQL queries on data. • Improve the database design by		
	normalization. • Familiar with basic database storage structures and access		
	techniques: file and page organizations, indexing methods including B tree,		
	and hashing		
Advanced	• After the completion of the course the students will be able to illustrate		
Computer	reference models with layers, protocols and interfaces. • Understands the		
Network	functionalities of different Layers, Routing algorithm and its applications.		
	They will be able to describe and analyze the basic protocols of computer		
	networks, and how they can be used to assist in network design and		
	implementation. • Explain and identify security and ethical issues in		

	computer networking. • Ability to simulate key networking
	techniques/algorithms.
Design and	 The outcome of this course will help the students to analyze the
Analysis of	performance of recursive and iterative algorithms.
Algorithm	Understandingandperformingsimpleproofsofalgorithmiccomplexityandcorre
	ctness. • An understanding of a variety of well-known algorithms on some
	of the data structures including the grasping approach, divide and
	overcome, dynamic programming, backtracking. • To understand P and NP
	Classes.
	•Abilitytounderstandnowthechoiceoldatastructuresandthealgonthindesign
DPMS and	Apply the basic concents of Database Systems and Applications
	• Apply the basic concepts of Database systems and Applications. • Ose the basics of SQL and construct quories using SQL in database creation and
Java Lau	interaction • Design a commercial relational database system (Oracle
	MySQL) by writing SQL using the system • Analyze and Select storage and
	recovery techniques of database system
DAATab	Students will be able to designing algorithm susing the concents of
2701 200	dynamicprogramming, greedy method. Back tracking, Branch and Bound
	strategy. • Able to compare, contrast, and choose appropriate algorithmic
	design techniques to present an algorithm that solves a given problem.
	Able to develop the efficient algorithms for the problems with suitable
	designing techniques.
Web	• Analyze a web page and identify its elements and attributes. • Create web
Technology	pages using XHTML and Cascading Style Sheets. • Build dynamic web pages
	using JavaScript (Client-side programming). • Create XML documents and
	Schemas. • Build interactive web applications using AJAX.
Computer	• Compare various graphics devices • Analyze and implement algorithms for
Graphics	line drawing, circle drawing and polygon filling • Apply geometrical
	transformation on 2D and 3D objects • Analyze and implement algorithms
	for clipping • Apply various projection techniques on 3D objects • Interpret
Converte averable a	various concepts and basic operations of image processing.
	•Analyzetnevulnerabilitiesinanycomputingsystemandhencebeabletodesigna
and Network	Securitysolution.
Security	• Identifythesecuntyissuesinthenetworkandresolveit.
	• Evaluatesecurity mechanisms using rigorous approaches, including the oretical.
	•CompareandContrastdifferentIEEEstandardsandelectronicmailsecurity.
Open	Solve common business problems using Word • Processors and
Elective	Spreadsheets packages. • Identify categories of programs, system software
Office	and applications. • Organize and work with files and folders. • Develop
Automation	Presentation ability
Third Semeste	r
Software	• The students will be able to demonstrate the minimum requirements for
Engineering	the development of application. • Ability to develop, maintain, efficient,
	reliable and cost-effective software solutions. • Able to demonstrate and
	understand how to apply current theories, models, and techniques that
	provide a basis for the software lifecycle. • Ability to critically thinking and

	evaluate assumptionsfor the techniques and tools necessary forengineering
	practice.
Digital Image	• Understanding fundamentals of Digital Image Processing including the
Processing	topics of filtering, transforms and morphology, and image analysis and
	compression • Be able to implement basic image processing algorithms in
	MAILAB. • Have the skill base necessary to further explore advanced topics
	of Digital Image Processing. • Be in a position to make a positive
	professional contribution in the field of Digital Image Processing
DIP Lab	
INTERNET OF	 Develop schemes for the applications of IOT in real time scenarios
THINGS	Manage the Internet resources • Model the Internet of things to business •
	Understand the practical knowledge through different case studies
Cloud	 Describe the principles of Parallel and Distributed Computing and
Computing	evolution of cloud computing from existing technologies • Implement
	different types of Virtualization technologies and Service Oriented
	Architecture systems • Elucidate the concepts of NIST Cloud Computing
	architecture and its design challenges • Analyze the issues in Resource
	provisioning and Security governance in clouds Choose among various cloud
	technologies for implementing applications
Data	
Analytics	
Internship	
Digital	 To perform and get knowledge about applications, virtual learning and
Technology(internet fundamentals.
OE)	•
	$eq:log_log_log_log_log_log_log_log_log_log_$
	oblemsolving, design thinking, and teamwork.
Fourth Semest	er
Artificial	
Intelligence	
and Machine	
Learning	
DATA	 Define data science and its fundamentals Demonstrate the process in
SCIENCE	data science • Explain machine learning algorithms necessary for data
	sciences • Illustrate the process of feature selection and analysisi of data
	analysis algorithms • Visualize the data and follow of ethics
Ad-hoc	1. Identify the characteristics and features of Adhoc Networks. 2.
Wireless	Understand the concepts & be able to design MAC protocols for Ad Hoc
Networks	networks 3. Implement protocols / Carry out simulation of routing protocols
	of Adhoc Networks 4. Interpret the flow control in transport layer of Ad Hoc
	Networks 5. Analyze security principles for routing of Ad Hoc Networks 6.
	Utilize the concepts of Adhoc Networks in VANETs
DEEP	Identify the deep learning algorithms which are more appropriate for
LEARNING	various types of learning tasks in various domains. • Implement deep
	learning algorithms and solve real-world problems. • Execute performance
	metrics of Deep Learning Techniques.
Project Work	

(10 WEEKS)	(16 Weeks)
------------	------------

Course Name	Subjects	Outcome
M.Sc.	First Semester	
	Advanced Operating	 Students will be able explain the structure of OS • and
	System Concepts	basic architectural components involved in OS design •
		Able to analyze and design the applications to run in
		parallel either using process or thread models of OS. •
		Analyze the various device and resource management
		techniques in timesharing and distributed environment.
		Understand the Mutual exclusion, Deadlock detection
		and agreement protocols of Distributed operating
		system. • Interpret the mechanisms adopted for file
		sharing in distributed Applications. • Conceptualize the
		components involved in designing a contemporary OS.
	Digital Logic and	 Students completing this course will able to perform
	Computer Design	the conversion among different number systems; familiar
		with basic logic gates, build simple logic circuits using
		basic gates. Students will be able to design
		combinational and sequential circuits using discrete
		components, Use basic structural Hardware Description
		Languages to implement digital circuits, design and
		conduct experiments related to digital systems and to
		analyze their outcomes. • Students will gain
		understanding of basic organization of computer system.
	Data Structures Using CPP	• Students completing this course will be able to
		describe the properties, interfaces, and behaviors of
		basic abstract data types list, stack and queue. • Will
		have ability to implement and analyze various searching
		techniques • Will have ability to implement and analyze
		text processing techniques
	Data Structures Using CPP	• Students understand OOPs concepts; use them to
	Lab.	represent the data structure. • Ability to code sorting
		methods, including selection, merge sort, heap sort and
		Quick sort. • Understand dynamic memory management
		techniques using pointers, constructors, destructors, etc
		ADIIIty to implement Stack ADT and Queue ADT
		Chasse appropriate data structures to represent data
		itoms in real world problems
	Digital Logic Lab	Hands on experiments to study logic gates and
		• Hallus-off experiments to study logic gates and
		universal gates • Understand the relationships between
		combination logic and Boolean algebra, and between
		sequential logic and finite state machines: • Ability to
		design and implement combinational circuits like half
		adder/full adder, half subtractor/full subtractor, code

	converters, comparators, MUX/DEMUX c). • Design and
	implement sequential circuits like flip- flops, counters
	and shift registers d) Study of 8-bit DAC and 8-bit ADC
Discrete Mathematical	 Students completing this course will have
Structures	understanding of the computational and algorithmic
	aspects of Sets, Relations, Mathematical Logic, Boolean
	algebra, Graphs, Trees and Algebraic Structure in the
	field of Computer sciences and its applications. Able to
	apply them in problem solving.
Computer Oriented	• Students will be able to demonstrate understanding of
Numerical Methods	common numerical methods and how they are used to
	obtain approximate solutions to otherwise intractable
	mathematical problems. • Derive numerical methods for
	various mathematical operations and tasks, such as
	interpolation, differentiation, integration, the solution of
	linear and nonlinear equations, and the solution of
	differential equations. • Implement numerical methods
	in C/C++
Probability and Statistical	Understand concepts of probability theory and
Methods	statistical inference in order to solve applied problems.
	• Familiarity with basic rules of probability and will be
	able to use them in modeling uncertainty in obtaining
	and recording data.
	• Understand the logic of statistical inference and will be
	able to apply common inferential procedures
Computer Fundamentals	• Upon completion of this course, the student will be
(OE)	describing the components of a typical computer
	and explain the characteristics of each of them.
	Understand the working of Windows operatingsystem
	and the services it provides. • Understand the
	importance of computers in business and society.
	Describe various types of networks network standards
	and communication software
Second Semester	
Advanced Computer	• After the completion of the course the students will be
Networks	able to illustrate reference models with layers, protocols
	and interfaces. • Understands the functionalities of
	different Layers, Routing algorithmand its applications.
	They will be able to describe and analyze the basic
	protocols of computer networks, and how they canbe
	used to assist in network design and implementation.
	Explain and identify security and ethical issues in
	computer networking. • Ability to simulate key
	networking techniques/algorithms.
Relational Database	After completing this course students will have a clear
ManagementSystems	understanding of RDBMS components and itspractical
(RDBMS)	uses. • Design ER-models to represent simple

	databaseapplication scenarios • Write SQL commands to
	create tables and indexes, insert/update/delete data, and
	query data in a relational DBMS. • Improve the database
	design by normalization. • Explain concurrency related
	issues and solutions to solve concurrency problem
Design and Analysis of	• The outcome of this course will help the students to
Algorithms	analyze the performance of recursive and iterative
	algorithms. • Understanding and performing simple
	proofs of algorithmic complexity and correctness. • An
	understanding of a variety of well-known algorithms on
	some of the data structures including the grasping
	approach, divide and overcome, dynamic programming,
	backtracking. • To understand P and NP classes. • Ability
	to understand how the choice of data structures and the
	algorithm design methods impact the performance of
	programs.
RDBMS Lab.	Students will be able to construct problem definition
	statements for real life applications and implement a
	database for the same. • Design conceptual models of a
	database using ER modeling for real life applications and
	also construct queries in Relational Algebra. • Create and
	populate a RDBMS, using SQL. • Writing queries in SQL
	to retrieve information from a data base. • To Analyze
	and apply concepts of normalization to design an
	optimal database
Design and Analysis of	• Students will be able to designing algorithms using the
Algorithms Lab	concepts of dynamic programming, greedy method,
	Backtracking, Branch and Bound strategy. • Able to
	compare, contrast, and choose appropriate algorithmic
	design techniques to present an algorithm that solves a
	given problem. • Able to develop the efficient algorithms
	for the problems with suitable designing techniques.
Microprocessor	Understand the fundamentals of Microprocessors.
	Understand the internal design of 8051 microcontroller
	along with the features and their programming. •
	Competent with the on-chip peripherals of
	microcontrollers • Design different interfacing
	applications using microcontrollers and peripherals.
Systems Analysis and	 A firm basis for understanding the life cycle of a
Design	systems development project; • An understanding of the
	analysis and development techniques required as a team
	member of a medium-scale information systems
	development project; • An understanding of the ways in
	which an analyst's interaction with system sponsors and
	users play a part in information systems development; •
	Experience in developing information systems models •
	Experience in developing systems project

	documentation; • An understanding of the object-
	oriented methods models as covered by the Unified
	Modeling Language
JAVA Programming	Knowledge of the structure and model of the Java
	programming language. • Use the Java programming
	language for problemsolving. • Design object-oriented
	solutions for small systems involving multiple objects
Office Automation (OE)	 Solve common business problems using Word
	Processors and Spreadsheets packages. • Identify
	categories of programs, system software
	andapplications. • Organize and work with files and
	folders. • Develop Presentation ability
Third Semester	
Software Engineering	• The students will be able to demonstrate the minimum
	requirements for the development of application.
	Ability to develop, maintain, efficient, reliable and cost-
	effective software solutions. • Able to demonstrate and
	understand how to apply current theories, models, and
	techniques that provide a basis for the software lifecycle.
	 Ability to critically thinking and evaluate
	assumptionsfor the techniques and tools necessary
	forengineering practice.
Programming with Python	 To acquire programming skills in core Python.
	acquire Object Oriented Skills in Python. • To develop
	the skill of designing Graphical user Interfaces in Python.
	 Demonstrate significant experience with the Python
	program development environment. • Understand and
	implement python modules like NumPy, Tkinter,
	Matplotlib
Big Data Analytics	Understand Big Data and its analytics in the real world
	 Analyze the Big Data framework like Hadoop and
	NOSQL to efficiently store and process Big Data to
	generate analytics Design of Algorithms to solve Data
	Intensive. • Problems using Map Reduce Paradigm •
	Design and Implementation of Big Data Analytics using
	pig and spark to solve data intensive problems and to
	generate analytics • Implement Big Data Activities using
	Hive
Practical I: Programming	• To acquire programming skills in core Python. • To
with Python	acquire Object Oriented Skills in Python. • To develop
	the skill of designing Graphical user Interfaces in Python.
	 Demonstrate significant experience with the Python
	program development environment. • Understand and
	implement python modules like NumPy, Tkinter,
	Matplotlib
Data Mining	• The outcome of the course will help the students to •
	Understand the data mining principles and techniques. •

	Understand the strengths and limitations of variousdata
	mining and data warehousing models. • Demonstrate
	basic data mining algorithms, methods, and tools. •
	Understanding of application areas - web mining,
	textmining, and ethical aspects of data mining.
Mobile Computing	Define mobile technologies in terms of hardware,
	software, and communications. • Utilize mobile
	computing nomenclature to describe and analyze
	existing mobile computing frameworks and
	architectures • Evaluate the effectiveness of different
	mobile computing frameworks • Describe how mobile
	technology functions to enable other computing
Digital Image Processing	Understanding fundamentals of Digital Image
	Processing including the topics of filtering, transforms
	and morphology, and image analysis and compression •
	Be able to implement basic image processing algorithms
	in MATLAB. • Have the skill base necessary to further
	explore advanced topics of Digital Image Processing. • Be
	in a position to make a positive professional contribution
	in the field of Digital Image Processing
Digital Technology	 To perform and get knowledge about applications,
	virtual learning and internet fundamentals. • Develop
	holistically by learning essential skills such as effective
	communication, problem-solving, design thinking, and
	teamwork.
Fourth Semester	
Artificial Intelligence	• To understand basic principles of Artificial Intelligence
	Understand formal methods of knowledge
	representation, logic and reasoning • Understand
	foundational principles, mathematical tools and program
	naradigms of artificial intelligence • Design an
	application of artificial intelligence (AI)
Artificial Intelligence Lab	Solve basic Al based problems • Apply Al techniques to
Artificial intelligence Lab	solve basic Al based problems • Apply Al techniques to
	Design an application of artificial intelligence
	Design an application of artificial intelligence
Practical – Il Project Work	• On successful completion the project student will be
	able to demonstrate a sound technical knowledge officier
	selected project topic. • Design engineering solutions to
	complex problemsutilizing a systems approach. • Io
	report and present the findings of the study conducted
	in the preferred domain
Internet of Things	 Identify the IoT networking components with respect
	to OSI layer. • Build schematic for IoT solutions. • Design
	and develop IoT based sensor systems. • Select IoT
	protocols and software. • Evaluate the wireless
	technologies for IoT. • Appreciate the need for IoT Trust

	and variants of IoT
Cloud Computing	a Describe the principles of Derellel and Distributed
Cloud Computing	Describe the principles of Parallel and Distributed
	Computing and evolution of cloud computing from
	existing technologies • Implement different types of
	Virtualization technologies and Service Oriented
	Architecture systems • Elucidate the concepts of NIST
	Cloud Computing architecture and its design challenges •
	Analyze the issues in Resource provisioning and Security
	governance in clouds Choose among various cloud
	technologies for implementing applications
Cryptography and	• Analyze the vulnerabilities in any computing system
Network Security	and hence be able to design asecurity solution. • Identify
-	the security issues in the network and resolve it.
	Evaluate security mechanisms using rigorous
	approaches, including theoretical. • Compare and
	Contrast different IEEE standards and electronic mail
	security.
Artificial Intelligence (OF)	Demonstrate fundamental understanding of the history
	of artificial intelligence (AI) and its foundations. • Apply
	hasic principles of AI in solutions that require problem
	solving inference perception knowledge
	representation and learning Demonstrate awareness
	and a fundamental understanding of various applications
	of Al tochniques in intelligent agents, export systems
	of Aftechniques in intelligent agents, expert systems,
	artificial neural networks and other machine learning
	models. • Demonstrate proficiency in applying scientific
	method to models of machine learning.