Criterion I–Curricular Aspects

Name of the Department: Botany

Key Indicator – 1.1 Curriculum Design and Development (50)

Metric No. QIM 1.1.1 (20) (Department/Academic)

 Curricula developed /adopted have relevance to the local/ national / regional/global developmental needs which is reflected in the Program Outcomes (Pos), and Course Outcomes (Cos) of the programs offered by the University.

Botany is a vital branch of science which deals with the study of Algae, Fungi, Lichens, Bryophytes, Pteridophytes, Gymnosperms, and Angiosperms, their classification, structure, growth, reproduction, metabolism, development, diseases, chemical properties, uses and ecological & evolutionary relationships among the different groups. The continued investigations of plants are fundamental in this postindustrial, knowledge-based modern era because they provide countless precious goods and services that underpin almost all life on the planet Earth. A greater understanding and knowledge of plants and their unique processes is inevitable to the future of human societies as it will enable us to overcome the challenges posed and reap benefits from the opportunities offered in this century.

Programme's Mission & Objectives:

To offer a High Quality Post Graduate Degree M. Sc., Botany through to the graduate-aspirant in order to nurture the natural science- Botany among the young minds. The pupil nurtured with botanical knowledge is the need of the hour to save the natural environment, educate the human resources towards conservation and save planet thereon.

The objectives of the programme include:

- To give an expanded knowledge about various kind of life forms of plant kingdom.
- To teach about naming and classification of plants.
- To understand about anatomical, embryological, cellular and molecular level approach of science in studying plants.
- To study about microorganisms, their impact on plants and various kind of plant diseases.
- To understand about modern concepts like plant molecular biology, plant genetic engineering and plant tissue culture.

- To introduce inter-disciplinary approaches like biostatistics and bioinformatics.
- To study about application part of botany viz., Medicinal plants and phytochemistry, Plant Breeding, Plant Biotechnology, Aesthetic Botany and Economic Botany.
- To enlighten the students about biodiversity, conservation and Intellectual Property Rights.

Programme outcomes

The program focuses on the unified nature of Plant Science and aims to generate young minds through competent teaching, and training on key technologies. Students will be encouraged to participate in research providing them opportunity to experiment their understanding and to reveal the relationship between the conventional education and research. Students after completing the M.Sc. Botany can join various National and International government organizations for their Ph.D. through CSIR JRF and as Research Assistants in various Govt. and private institutions/Corporate sectors, plant based private companies and can also join teaching profession

- Attach the relevant document supporting Program outcomes, Program specific outcomes and course outcomes of all the Programs offered by the department (Enclosure-1).
- Attach the latest syllabus copy along with the syllabus approved for the year 2020-21.
 (Enclosure 2).

4. Metric No. QnM 1.1.2 (30) (Department/Academic)

- 1. Programmes offered by the institution focus on employability/ entrepreunership/ skill development and their course syllabi are adequately revised to incorporate contemporary requirements.
- 2. List activities with direct bearing on Employability/ Entrepreneurship/ Skill development :

Name of the	Course	Name of the	Activities with direct bearing on Employability/	Year of
Course	Code	Programme	Entrepreneurship/ Skill development	introduction
Biostatistics and Bioinformatics	SCT-1.1	M.Sc. Botany	Students are eligible and given preference for getting selection in Pharmaceutical Industries and Agriculture Departments.	2012
Biostatistics and Bioinformatics	SCP-1.1	M.Sc. Botany	Understand tools, techniques and data analysis with the help of information technology	2012
Methods in Plant	SCT-2.1	M.Sc. Botany	Advances laboratory and analytical skill, which	2012

Sciences			enables students to be acquainted with various		
			laboratory techniques		
Methods in Plant	SCP-2.1	M Sc. Botany	Enhance analytical methods in plant sciences	2012	
Sciences	501-2.1	W.Se. Dotany	Elinance analytical methods in plant sciences	2012	
Medicinal Plants					
and	SCT-3.1	M.Sc. Botany	Herbal drug formulation and pharmaceutical industry	2012	
Phytochemistry					
Medicinal Plants			Gain knowledge of medicinal aspects of plants and		
and	SCP-3 1	M Sc. Botany	their uses in home remedies. Become able to	2012	
Phytochemistry	501-5.1	W.SC. Dotany	understand drug abuse like excess and unnecessary	2012	
T Hytoeneniisti y			use of antibiotics, steroids and opioids etc.		
Plant	SCT 4 1	M Sc. Botany	Skill in Biotechnological methods and practices;	2012	
Biotechnology Biotechnology			Employability in Biotech based industries.	2012	
Plant	SCP 4 1	M Sc. Botany	Advances in genetic engineering techniques to	2012	
Biotechnology	501-4.1	W.Se. Dotany	produce genetically modified plants	2012	
Plant Breeding	SCT-4.1	M Sc. Botany	Tools and techniques used for quality enhancement	2012	
Thank Diecomig	501-4.1	Wi.Se. Dotany	of economically important plants and crops	2012	
Plant Breeding	SCP-4 1	M Sc. Botany	Modify and improve the traits of plants in order to	2012	
Thank Diccomig	501 4.1	Wilse. Dotaily	produce desired characteristics	2012	
Plant			Commercial Nursery establishment/gardening/self-		
Propagation	OE-3.1	M.Sc. Botany	employment	2016	
techniques					
Medicinal	OF-4 1	M Sc. Botany	Herbal drug formulation pharmaceutical industry	2018	
Botany	<u>∪</u> _ <u></u> ,1	M.SC. Dotany	nerou drug formulation pharmaceutical industry	2010	
Aesthetic	OF-4 1	M Sc. Botany	Ornamental plant industries/ gardening /self-	2018	
Botany	01-7.1	M.SC. Dotany	employment	2010	

- 5. Attach Curriculum/ Syllabus of the courses that have activities: Enclosure 3
- 6. Enclose MoU's with relevant organizations for these courses, if any: Nil

Key Indicator – 1.2 Academic Flexibility (30)

Metric No. QnM 1.2.1 (30) (Department/Academic)

1. How many new courses were introduced? : Nil

- Number of courses offered by the department across all Programmes during the last five years: 27
- 3. Enclose the curriculum of new courses offered : NA
- 4. new courses introduced of the total number of courses across all Programmes offered : Nil

Name of the new course introduced	Programme name	Programme code	Course code	Year of introduction	Link of the relevant document

- 5. Minutes of BOS clearly specifying the syllabus approval of new courses (Enclosure 4)
- 6. Academic Council meeting extracts endorsing the decision of BOS.

Key Indicator – 1.3 Curriculum Enrichment (50)

Metric No. QIM 1.3.1 (15) (Department/Academic)

 Whether institution integrates cross cutting issues relevant to Gender, Environment and Sustainability, Human Values and Professional Ethics and other value framework enshrined in SDG and NEP 2020 into the Curriculum

Write description in maximum of 500 words:

 Upload the list and description of the courses which address the Gender, Environment and Sustainability, Human Values and Professional Ethics and other value framework enshrined in SDG and NEP 2020 into the Curriculum :_____

Metric No. QnM 1.3.2 (30) (Department/Academic)

 How many new certificate/value-added courses/Diploma program/ online courses of MOOCs/SWAYAM/e-Pathashala/NPTEL etc where students of the institution have enrolled and successfully completed are added : Nil

Name of the add on/certificate/value	Program duration	Number of students benefited						
added courses/ Diploma programs/	(Number of	through the program						
Online courses of	contact hours)							
MOOC/SWAYAM/e-								
pathashala/NPTEL etc (with 30 or								
more contact hours) offered during								
last five years								

- 2. Attach Institutional Program brochure/ notice for certificates/ value added programs with course modules and outcomes : NA
- 3. List of students and the attendance sheet for the above mentioned programs with course modules and outcomes : NA
- 4. Evidence of course completion like course completion certificate etc. : NA

Metric No. QnM 1.3.3 (Department/Academic)

(5)

- 1. Number of Programs offered that have components of field projects/research projects/internships during the academic year (Without repeat count) (2020-2021): 01
- Number of Programs offered during last five year (Without repeat count) (2020- 2021) :
 01.

Programme name	Components of field projects/ research projects/internships along with course code	Link of the relevant document

- 3. Program and course contents having element of field projects/ research projects/internships as approved by BOS:
- 4. Sample internship completion letter provided by host institutions
- Sample evaluated project report/ field work report submitted by the students (Enclosure 5)

Key Indicator – 1.4 Feedback System (20)

Metric No. QnM 1.4.1 (20) (Not required)

 Structured feedback for curriculum and its transactions is regularly obtained from stakeholders like Students, Teachers Employers, Alumni Academic peers and feedback processes of the institution may be classified as follows

Options:

- A. Feedback collected, analyzed and action taken and communicated to relevant body and feedback hosted on the institutional website
- B. Feedback collected, analyzed and action has been taken and communicated to the relevant body
- C. Feedback collected and analyzed
- D. Feedback collected
- E. Feedback not collected
- 2. Attach Report of analysis of feedback received from different stakeholders' year wise:
- 3. Attach Action taken report of the University on feedback report as stated in the minutes of the Governing Council, Syndicate, Board of Management :
- 4. Attach At least 4 filled in feedback form from different stakeholders like students,

teachers, employers, alumni etc.

List of enclosures (From A1 onwards)

- 1. Programme / Course outcomes
- 2. CBCS curriculum (2020-21)
- 3. Curriculum/ Syllabus of the courses that have activities
- 4. Minutes of relevant Academic Council/BOS meeting
- 5. Number of students undertaking field project or internships (2020-21)

Enclosure-1

Name of the Department	:	Department of Botany
Academic Year	:	2020-2021

Plant science is now an amalgamation of basic and applied science. Plants besides having the unique capability to trap solar energy also provide food to all cannot be replicated by any system. Conventional studies like plant identification is now being supplemented with molecular techniques like DNA Barcoding. The courses have been designed to benefit all Botany students to study various aspects of plant science including its practical applications. Keeping in mind that these students can take up teaching at different levels, research work in research institutes and or industry, doctoral work, environment impact assessment, biodiversity studies, entrepreneurship, scientific writing relevant topics have been included in the curriculum.

Name of the programme	Programme specific outcomes	
M.Sc. Botany	Knowledge and	Enable the students to be
	understanding	resourceful in identifying of
	about plant diversity	plants.
	Practical skills in the field and laboratory experiments promotes creative and novel ideas in biological concepts	Students will become Hands on expertise in plant Sciences.
	It enhances skills in handling scientific instruments, planning and executing biological research.	They become focused to take up Research and Teaching opportunities
	Scientific knowledge in life science and fundamental metabolism of plants.	They will be able to clear IFS, CSIR-NET, SET, GATE, ICMR.NET, ICAR.NET etc.,
	Knowledge about biodiversity exploration and conservation	Career opportunities and job opportunities.
	Presentation skills (oral & writing) in life sciences.	Entrepreneurship skill development
	It provides Entrepreneurship skill development	It promotes career and job opportunities in both Govt. and private sectors.

Programme outcomes and Programme specific outcomes

Sl. No.	Name of the Course	Course code	Programme specific outcomes							Programme specific outcomes					
1.	Phycology, Mycology,	HCT 1.1	Understand the structure, function of algae,												
	Bacteriology and		fungi, viruses and bacteria												
	Virology		Identify algae and fungi in their natural												
			habitat on the basis of characters												
			Develop the cultures of algae and fungi												
2.	Bryophytes and	HCT 1.2	The students will learn about the structure												
	Pteridophytes		and reproduction of certain selected species												
			of Bryophytes and Pteridophytes.												
			Understand the structure and life cycle of												
			different bryophytes												
			Understand the structure and life cycle of												
2	Commence and		The stade state set ill be sure should the state state												
3.	Gymnosperms and	HC1 1.3	The students will learn about the structure												
	Paraeobotany		and reproduction of certain selected species												
			ot Gymnosperms.												
			Learn few representatives of fossil forms.												
			plants/ flora												
			Study the evolutionary affinity between												
			Cordiatales Cycadales and Coniferales												
4	Biostatistics and	SCT 1 1	The students will know the basic principles												
	Bioinformatics	501 1.1	of biostatistics and computer applications in												
	Diomiormatics		biology.												
			understand the fundamental concepts of												
			biostatistics.												
			learn about the computer and imbibe												
			computer skills for biological data												
			management and graphical presentation.												
			be enlightened about the need for computer												
			applications, programs and techniques for												
			biology.												
			In bioinformatics they will gain deep												
			understanding of using computer to												
			visualize, explore and model sequence												
			analysis.												
5.	Ecology and	HCT 2.1	The students get to understand the basic												
	Environmental Biology		concepts of geology, pedology, ecology,												
			and advanced ecology, phytogeography												
			know the establishment of accession												
			vegetation, plant succession and adaptations												
			, seguriton, plant succession and adaptations.												
6	Cell and Molecular	HCT 2 2	By the end of this course students will be												
0.	Biology		able to understand the structure of cells in												
			relation to the functional aspects.												
			The students will be able to learn about the												
			basics of cell and its inclusions												

Course outcomes of all the Programme offered by the Department

			to understand the difference between
			prokaryotic and eukaryotic cells.
			to study the details of the plant cell wall,
			cytosol and cytoplasmic organelles.
			to understand the properties of nucleic acids
			(DNA &RNA) and their synthesis
			to study the details of protein synthesis and
			cell signalling.
7.	Genetics and Evolution	HCT 2.3	The students will be able to acquire
			knowledge about the nature and function of
			genes and processes of inheritance as they
			influence the characteristics of populations
			and species.
			understand the basic concepts of mendelian
			genetics, its variations and applications
			familiarize with the various concepts of
			evolution
			The students will understand the concepts of
			microbial and human genetics and genetic
			mapping.
			to study the details of protein synthesis and
			cell signalling.
8.	Methods in Plant	SCT 2.1	The course will nurture the knowledge on
	Science		biological samples especially plant samples.
			I ne course will give an expertise in
			biological techniques to be employed in the
			field of botany
9	Systematic Botany of	НСТ 3 1	The students are able to understand about
	Angiosperms	1101 5.1	Plant taxonomy and their systematic
	ringrosperins		classification systems
			are able to understand about modern
			approaches in taxonomic studies.
			enlightened about the role of taxonomy in
			conservation of biodiversity
10.	Botanical Tour and	HCT 3.2	Understand and identify the plants under
	Herbarium preparation		natural environment
			Preparation of herbarium
			Analyze the floral formula of monocot and
			dicot families
11.	Reproductive Biology	HCT 3.3	Understand photo morphogenesis and
	of Angiosperms and		seedling development
	Plant Anatomy		Evaluate the root developments, flower
			development in plants
			Study the reproduction in plants with the
			help of male female gametophyte
			Study of microspogesis and
			megasprogenesis.

			Understand pollen-pistil interacting and seed
			development.
12.	Medicinal Plants and	SCT 3.1	Learner will definite witness the role of
	Phytochemistry		plants in survival of human beings and other
			organism.
			They will also well verse with contribution
			made by our primitive people in exploration
			of plant knowledge to alleviate common
			diseases and development of system of
			medicine.
			Students will be able to Identify the
			biological source, morphology, cultivation,
			collection, drying, packing, storage, medical
			as well as non-medical uses of plants and
			plant secretions.
			Students will also be able to identify the
			different chemical constituents present in
			plants their biosynthetic origin,
			characterization, natural occurrence and
			pharmacological action.
13.	Plant Physiology	HCT 4.1	The Students will learn about absorption,
			translocation and utilization of water and
			other minerals.
			comprehend the changes during growth
			process (germination to abscission).
			understand the energy flow and various
			metabolic cycles with their integration.
			get an overall perception about various
			physiological processes occurring in plants.
14.	Project work		Staff members are in different areas viz,
			cytology, and genetics, taxonomy and ethno
			botany, mycology, paleobobatany
			Select their topic as per teacher's supervision
			Learn various techniques
			Examiners are appointed from other
1.7			universities.
15.	Plant Breeding	SCT 4.1	Students will understand the concepts of
			plant breeding involving the principles,
			selection procedure and achievements in
			plant breeding. So they will be enabled to
			Implement their knowledge on plant
			breeding techniques in their agriculture
			students will understand the various
			students will understand the various
			Processes in crop improvement program.
			by knowing the elementary principles in plant broading students will understand the
			importance and value of producing disease
			and insect resistant plants
Î.		1	and model resistant plants.

16.	Plant Biotechnology	SCT 4.1	The students will understand the basic
			concepts of genome organization in plants
			and molecular markers.
			have a clear knowledge of plant tissue
			culture techniques
			have a basic understanding of the plant
			genetic transformation methods.
			be fully aware of the basics and applications
			of plant biotechnology.

Enclosure- 2

Karnataka State Akkamahadevi Women's University, Vijayapura

M.Sc. Botany Programme - Choice Based Credit System (CBCS) Syllabus

CORE SUBJECT: BOTANY – [Post Graduate]

Course	e Course name		C	redit	S	Marks								Remark		
coue							C1		C2			C3			Total	Keinark
		L	Т	Р	Total	L	T	Р	L	T	ΓΡΓ		L T P			
Semester I												•				
HCT-1.1	Phycology, Mycology, Bacteriology and	04			04	15			15			70			100	
	Virology															
HCT-1.2	Bryophytes and Pteridophytes	04			04	15			15			70			100	
HCT-1.3	Gymnosperms and Palaeobotany	04			04	15			15			70			100	
SCT-1.1*	Plant Pathology	04			04	15			15			70			100	
	Phytogeography and Evolution															
	Biostatistics and Bioinformatics															
	*(One of the above SOFT CORE subjects shall															
	be selected by the candidate/ as per the decision															
	of the Departmental Council one SC may be															
	offered)															
HCP-1.1	Phycology, Mycology, Bacteriology and			02	02			15			15			70	100	
	Virology															
HCP-1.2	Bryophytes and Pteridophytes			02	02			15			15			70	100	
HCP-1.3	Gymnosperms and Palaeobotany			02	02			15			15			70	100	
SCP-1.1*	*Based on Soft Core Paper offered			02	02			15			15			70	100	
O.E -1.1	Offered by Department of Women's Studies	04			04	15			15			70			100	
	Total	20		08	28	75		60	75		60	350		280	900	
Semester II																
HCT-2.1	Ecology and Environmental Biology	04			04	15			15			70			100	
HCT-2.2	Cell and Molecular Biology	04			04	15			15			70			100	

HCT-2.3	Genetics and Evolution	04		04	15			15		70		100	
SCT-2.1*	Methods in Plant Science	04		04	15			15		70		100	
	Plant Genetic Engineering												
	Nutraceuticals												
	*(One of the above SOFT CORE subjects shall												
	be selected by the candidate/ as per the decision												
	of the Departmental Council one SC may be												
	offered)												
HCP-2.1	Ecology and Environmental Biology		02	02			15		15		70	100	
HCP-2.2	Cell and Molecular Biology		02	02			15		15		70	100	
HCP-2.3	Genetics and Evolution		02	02			15		15		70	100	
SCP-2.1*	*Based on Soft Core paper offered		02	02			15		15		70	100	
OE-2.1	Offered by Department of Women's studies	04		04	15			15		70		100	
	Total	20	08	28	75		60	75	60	350	280	900	
Semester III	[
HCT-3.1	Systematic Botany of Angiosperms	04		04	15			15		70		100	
HCP-3.2	Botanical Tour and Herbarium preparation		02	02								50	
	1. The candidate shall undertake compulsorily												
	field work outside the campus area/ District, a												
	minimum of 3 to 4 days to understand floristic												
	diversity of Angiosperms and to collect												
	specimens from various agro-climatic												
	conditions for the preparation of the												
	Herbarium.												
	2. The University shall encourage the Department												
	by providing required funds to undertake field												
	studies by the students, since it is hard core												
	subject required for the completion of the												
	M.Sc. Botany programme.												
HCT-3.3	Reproductive Biology of Angiosperms and Plant	04		04	15			15		70		100	
	Anatomy												
a a a 4 i				~ ~ ~	1	1 T		1 T					

	Medicinal Plants and Phytochemistry											
	Biodiversity and Conservation											
	*(One of the above SOFT CORE subjects shall											
	be selected by the candidate/ as per the decision											
	of the Departmental Council one SC may be											
	offered)											
HCP-3.1	Systematic Botany of Angiosperms		02	02		15		15		70	100	
HCP-3.3	Reproductive Biology of Angiosperms and Plant		02	02		15		15		70	100	
	Anatomy											
SCP- 3.1*	*Based on Soft Core paper offered		02	02		15		15		70	100	
OE-3.1*	Plant Propagation Techniques	04		04	15		15		70		100	
	Plant Diversity and Human Welfare											
	*(One of the above OPEN ELECTIVE subjects											
	shall be selected by the candidate/ as per the											
	decision of the Departmental Council one OE											
	may be offered)											
1												
	Total	16	06	24	75	45	75	45	350	210	750	
Semester IV	Total	16	06	24	75	45	75	45	350	210	750	
Semester IV HCT-4.1	Total Plant Physiology	16	06	24 04	75	45	75	45	350 70	210	750 100	
Semester IV HCT-4.1 HCPW-4.2	Total Plant Physiology Project work*	16 04	06	24 04 06	75	45	75	45	350 70	210	750 100 150	
Semester IV HCT-4.1 HCPW-4.2 SCT-4.1*	Total Plant Physiology Project work* Plant Breeding	16 04 04	06	24 04 06 04	75 15 15	45	75 15 15	45	350 70 70	210	750 100 150 100	
Semester IV HCT-4.1 HCPW-4.2 SCT-4.1*	Total Plant Physiology Project work* Plant Breeding Plant Biotechnology	16 04 04	06 06	24 04 06 04	75 15 15	45	751515	45	350 70 70	210	750 100 150 100	
Semester IV HCT-4.1 HCPW-4.2 SCT-4.1*	Total Plant Physiology Project work* Plant Breeding Plant Biotechnology Ethnobotany and IPR	16 04 04 04	06	24 04 06 04	75 15 15	45	75 15 15	45	350 70 70	210	750 100 150 100	
Semester IV HCT-4.1 HCPW-4.2 SCT-4.1*	TotalPlant PhysiologyProject work*Plant BreedingPlant BiotechnologyEthnobotany and IPR*(One of the above SOFT CORE subjects shall	16 04 04 04	06	24 04 06 04	75 15 15	45	75 15 15	45	350 70 70	210	750 100 150 100	
Semester IV HCT-4.1 HCPW-4.2 SCT-4.1*	Total Plant Physiology Project work* Plant Breeding Plant Biotechnology Ethnobotany and IPR *(One of the above SOFT CORE subjects shall be selected by the candidate/ as per the decision	16 04 04 04	06	24 04 06 04	75 15 15	45	75 15 15	45	350 70 70	210	750 100 150 100	
Semester IV HCT-4.1 HCPW-4.2 SCT-4.1*	Total Plant Physiology Project work* Plant Breeding Plant Biotechnology Ethnobotany and IPR *(One of the above SOFT CORE subjects shall be selected by the candidate/ as per the decision of the Departmental Council one SC may be	16 04 04 04	06	24 04 06 04	75 15 15	45	75 15 15	45	350 70 70	210	750 100 150 100	
Semester IV HCT-4.1 HCPW-4.2 SCT-4.1*	Total Plant Physiology Project work* Plant Breeding Plant Biotechnology Ethnobotany and IPR *(One of the above SOFT CORE subjects shall be selected by the candidate/ as per the decision of the Departmental Council one SC may be offered)	16 04 04 04	06	24 04 06 04	75 1 5 1 5	45	75 15 15	45	350 70 70	210	750 100 150 100	
Semester IV HCT-4.1 HCPW-4.2 SCT-4.1* HCP-4.1	Total Plant Physiology Project work* Plant Breeding Plant Biotechnology Ethnobotany and IPR *(One of the above SOFT CORE subjects shall be selected by the candidate/ as per the decision of the Departmental Council one SC may be offered) Plant Physiology	16 04 04 04	06	24 04 06 04 04 02	75 15 15	45	75 15 15	15	350 70 70	210	750 100 150 100 100	
Semester IV HCT-4.1 HCPW-4.2 SCT-4.1* HCP-4.1 SCP-4.1*	TotalPlant PhysiologyProject work*Plant BreedingPlant BiotechnologyEthnobotany and IPR*(One of the above SOFT CORE subjects shall be selected by the candidate/ as per the decision of the Departmental Council one SC may be offered)Plant Physiology*Based on Soft Core paper offered	16 04 04 04	06 06 06 02 02	24 04 06 04 04 02 02	75 15 15	45 15 15	75 15 15	45 15 15	350 70 70	210 70 70	750 100 150 100 100 100	
Semester IV HCT-4.1 HCPW-4.2 SCT-4.1* HCP-4.1 SCP-4.1* O.E-4.1*	TotalPlant PhysiologyProject work*Plant BreedingPlant BiotechnologyEthnobotany and IPR*(One of the above SOFT CORE subjects shall be selected by the candidate/ as per the decision of the Departmental Council one SC may be offered)Plant Physiology*Based on Soft Core paper offeredMedicinal Botany	16 04 04 	06 06 06 02 02	24 04 06 04 02 02 04	75 15 15 15 15	45 15 15	75 15 15	45 15 15	350 70 70 70 70	210 70 70	750 100 150 100 100 100 100	
Semester IV HCT-4.1 HCPW-4.2 SCT-4.1* HCP-4.1 SCP-4.1* O.E-4.1*	TotalPlant PhysiologyProject work*Plant BreedingPlant BiotechnologyEthnobotany and IPR*(One of the above SOFT CORE subjects shallbe selected by the candidate/ as per the decisionof the Departmental Council one SC may beoffered)Plant Physiology*Based on Soft Core paper offeredMedicinal BotanyAesthetic Botany	16 04 04 04 04 04 04 04 04 04	06 06 06 02 02 02	24 04 06 04 02 02 04	75 15 15 15 15	45 15 15	75 15 15 15	45 15 15	350 70 70 70 70	210 70 70	750 100 150 100 100 100 100	

shall be selected by the candidate/ as per the decision of the Departmental Council one OE may be offered)											
Total	12	08	20	45	30	45	30	210	140	650	
Programme total										3200	

L- Lecture, T- Tutorial, P- Practical.

HCT- Hard Core Theory; SCT- Soft Core Theory; OE- Open Elective; HCP- Hard Core Practical; SCP- Soft Core Practical.

HCPW- Hard Core Project Work/Dissertation.

*The Project work shall be evaluated for 150 marks (100 marks for dissertation, 25 marks for presentation of the work using power point slides and 25 marks for viva-voce examination by inviting external examiner along with internal examiner).

Board of Studies Members

- 1. Dr. G. G. Rajaput, Dean, Faculty of Science and Technology
- 2. Dr. K.N. Amruthesh, Professor, Dept. of Botany, University of Mysore
- 3. Dr. H.R. Raveesha, Professor, Dept. of Botany, Bangalore University
- 4. Dr. Prashanth S J, Associate Professor, Coordinator, Dept. of Botany

- Chairman
- Member
- Member
- Member and Convener

Sd/-

Chairman/ Co-ordinator Board of Studies (BOS) in Botany Dept. of Botany, Karnataka State Akkamahadevi Women's University Vijayapura – 586 108, Karnataka

<u>Scheme of Teaching, Examination and Credit points of</u> <u>M.Sc. Botany Programme w.e.f. 2020-21</u>

Semester	Paper No. and Title	Teaching Hrs/week	Internal Assessme	Exam Hrs	Exam Marks	Credits
			nt			
	HCT-1.1: Phycology, Mycology, Bacteriology and Virology	04	30	03	70	04
	HCT-1.2: Bryophytes and Pteridophytes	04	30	03	70	04
	HCT-1.3: Gymnosperms and Palaeobotany	04	30	03	70	04
	SCT-1.1: Plant Pathology	04	30	03	70	04
	SCT-1.1: Phytogeography and Evolution					
I	SCT-1.1: Biostatistics and Bioinformatics					
	HCP-1.1: Phycology, Mycology, Bacteriology and Virology	04	30	04	70	02
	HCP-1.2: Bryophytes and Pteridophytes	04	30	04	70	02
	HCP-1.3: Gymnosperms and Palaeobotany	04	30	04	70	02
	SCP-1.1: Based on Soft Core Paper offered	04	30	04	70	02
	OE-1.1: Offered by Department of Women's Studies	04	30	03	70	04
	HCT-2.1: Ecology and Environmental Biology	04	30	03	70	04
	HCT-2.2: Cell and Molecular Biology	04	30	03	70	04
	HCT-2.3: Genetics and Evolution	04	30	03	70	04
	SCT-2.1: Methods in Plant Science	04	30	03	70	04
	SCT-2.1: Plant Genetic Engineering					
п	SCT-2.1: Nutraceuticals					
	HCP-2.1: Ecology and Environmental Biology	04	30	04	70	02
	HCP-2.2: Cell and Molecular Biology	04	30	04	70	02
	HCP-2.3: Genetics and Evolution	04	30	04	70	02
	SCP-2.1: Based on Soft Core Paper offered	04	30	04	70	02
	OET-2.1: Offered by Department of Women's Studies	04	30	03	70	04
	HCT-3.1: Systematic Botany of Angiosperms	04	30	03	70	04
	HCP-3.2: Botanical Tour and Herbarium preparation	04	14		36	02
	HCT-3.3: Reproductive Biology of Angiosperms and Plant Anatomy	04	30	03	70	04
	SCT-3.1: Economic Botany	04	30	03	70	04
	SCT-3.1: Medicinal Plants and Phytochemistry					
	SCT-3.1: Biodiversity and Conservation					
111	HCP-3.1: Systematic Botany of Angiosperms	04	30	04	70	02
	HCP-3.3: Reproductive Biology of Angiosperms and Plant Anatomy	04	30	04	70	02
	SCP-3.1: Based on Soft Core Paper offered	04	30	04	70	02
	OET-3.1: Plant Propagation Techniques	04	30	03	70	04
	OET-3.1: Plant Diversity and Human Welfare					
	HCT-4.1: Plant Physiology	04	30	03	70	04
	HCPW-4.2: Project Work	06	50		70	06
	SCT-4.4: Plant Breeding	04	30	03	70	04
	SCT-4.4: Plant Biotechnology		-	-	-	
	SCT-4.4: Ethnobotany and IPR					
IV	HCP-4.1: Plant Physiology	04	30	04	70	02
	SCP-4.1: Based on Soft Core Paper offered	04	30	04	70	02
	OET-4.1: Medicinal Botany	04	30	03	70	04
	OET-4.1: Aesthetic Botany					
		Total Ma	rks (I to IV S	emester)	$=\overline{2800+40}$)0 (OET)

HCT: Hard Core Theory; SCT: Soft Core Theory; HCP: Hard Core Practical SCP: Soft Core Practical; HCPW: Project Work and Dissertation, OET: Open Elective Theory

<u>Karnataka State</u> Akkamahadevi Women's University, Vijayapura M. Sc. Botany, Choice Based Credit System (CBCS) Syllabus, CORE SUBJECT: Botany – [Post Graduate]

Semester I	Hrs/week	Credits
HCT-1.1: Phycology, Mycology, Bacteriology and Virology	04	04
HCT-1.2: Bryophytes and Pteridophytes	04	04
HCT-1.3: Gymnosperms and Palaeobotany	04	04
SCT-1.1: Plant Pathology	04	04
SCT-1.1: Phytogeography and Evolution		
SCT-1.1: Biostatistics and Bioinformatics		
HCP-1.1: Phycology, Mycology, Bacteriology and Virology	04	02
HCP-1.2: Bryophytes and Pteridophytes	04	02
HCP-1.3: Gymnosperms and Palaeobotany	04	02
SCP- 1.1: Based on Soft Core Paper offered	04	02
OE-1.1: Offered by Department of Women's Studies	04	04
	Sub.	Total:28
Semester II		
HCT-2.1: Ecology and Environmental Biology	04	04
HCT-2.2: Cell and Molecular Biology	04	04
HCT-2.3: Genetics and Evolution	04	04
SCT-2.1: Methods in Plant Science	04	04
SCT-2.1: Plant Genetic Engineering		
SCT-2.1: Nutraceuticals		
HCP-2.1: Ecology and Environmental Biology	04	02
HCP-2 2: Cell and Molecular Biology	04	02
HCP-2 3: Genetics and Evolution	04	02
SCP-2 1: Based on Soft Core Paper offered	04	02
OFT-2 1: Offered by Department of Women's Studies	04	04
OE1-2.1. Oncred by Department of women's studies	Sub	Total·28
Somostar III	Sub.	10001.20
HCT.3 1: Systematic Botany of Angiosperms	04	04
HCP. 3.2: Botanical Tour and Herbarium preparation	04	07
HCT-3 3: Reproductive Biology of Angiosperms and Plant Anatomy	04	04
SCT-3 1: Economic Botany	04	04
SCT-3.1: Economic Dotany	04	04
SCT-3.1: Riodiversity and Conservation		
HCP 3 1: Systematic Botany of Angiosperms	04	02
HCD 3 3: Perroductive Biology of Angiosperms and Plant Anatomy	04	02
SCP 3.1: Based on Soft Core Paper offered	04	02
OET 2 1: Diant Dropagation Tachniques	04	02
OET 2 1. Diant Diversity and Human Walfers	04	04
OE1-5.1. Flant Diversity and Human wenale	Sub	Total.24
Consector IV	Sub.	10(a):24
Semester I V	0.4	04
HC1-4.1: Plant Physiology	04	04
HCPW-4.2: Project Work	04	04
SCT-4.4: Plant Breeding	04	04
SCI-4.4: Plant Biotechnology		
SUI-4.4: Ethnobotany and IPR	0.4	00
HCP-4.1: Plant Physiology	04	02
SUP-4.1: Plant Breeding	04	02
OE1-4.1: Medicinal Botany	04	04
OE1-4.1: Aesthetic Botany	~ -	m . 1 * *
	Sub.	Total:20

Total Credits: 64+04 (Theory + Project) +32 (Practical + Field study or Study tour) = 100 credits

Note:

- 1. There shall be 30 marks as internal assessment (IA) for each theory paper and practical paper
- 2. There shall be 70 marks for each theory paper and practical final examination at the end of each semester.
- 3. The project work carries 150 marks (Dissertition-100, Presentation -25 and Viva voce- 25).

Open Elective Papers for other Department students:

Semester- I OET 1.1 – Offered by the Department of Women's Studies	Hrs/Week 04	Credits 04
Semester- II OET 2.1 – Offered by the Department of Women's Studies	04	04
Semester-III OET-3.1- Plant Propagation Techniques Plant Diversity and Human Welfare	04	04
Semester-IV OET-4.1- Medicinal Botany Aesthetic Botany	04	04

OET Total Credits: 16

Note:

There shall be 30 marks as internal assessment (IA) for each theory paper
 There shall be 70 marks for each theory paper

DEPARTMENT OF BOTANY

Karnataka State Akkamahadevi Women's University, Vijayapura

Syllabus

For

P.G. Studies in

BOTANY

Choice Based Credit System 2020-21 onwards

Karnataka State Akkamahadevi Women's University, Vijayapura

DEPARTMENT OF BOTANY

M.Sc. Botany Programme under Choice Based Credit System (CBCS) w.e.f. 2020-21

- 1.1. Duration: Two years with four semesters, each of 16 weeks duration.
- 1.2. Eligibility for admission: B.Sc. graduates of AWU, Vijayapura or any other recognized university with Botany as one of the main subject are eligible for admission to M.Sc. Botany course. Relaxation is for SC/ST/Cat-I students as per university norms.
- **1.3. Intake**: 20 students for the first semester that excludes seats under enhanced fee. other rules for admission for intake of students may change from time to time as per university notification.
- **2. Attendance**: Every student must have at least 75% attendance in each semester for eligibility to appear for semester end examination.
- 3. Medium of Instruction: The medium of instruction shall be English.

4. Course structure:

The student desirous for a degree M.Sc. in Botany shall complete 78 credits in Botany. Department also offers 8 credits each for elective papers in I, II, III and IV semester for students from other science subjects. Given below are the details about credits for each theory paper/practical/project work/Study tour and number of teaching hours for the four semesters along with marks allocation for students offering M. Sc. Botany or elective paper in Botany.

Master of Science (M.Sc.) in Botany

Botany is a vital branch of science which deals with the study of Algae, Fungi, Lichens, Bryophytes, Pteridophytes, Gymnosperms, and Angiosperms, their classification, structure, growth, reproduction, metabolism, development, diseases, chemical properties, uses and ecological & evolutionary relationships among the different groups. The continued investigations of plants are fundamental in this post-industrial, knowledge-based modern era because they provide countless precious goods and services that underpin almost all life on the planet Earth. A greater understanding and knowledge of plants and their unique processes is inevitable to the future of human societies as it will enable us to overcome the challenges posed and reap benefits from the opportunities offered in this century.

Programme's Mission & Objectives:

To offer a High Quality Post Graduate Degree M. Sc., Botany through to the graduateaspirant in order to nurture the natural science- Botany among the young minds. The pupil nurtured with botanical knowledge is the need of the hour to save the natural environment, educate the human resources towards conservation and save planet thereon.

The objectives of the programme include;

- To give an expanded knowledge about various kind of life forms of plant kingdom.
- To teach about naming and classification of plants.
- To understand about anatomical, embryological, cellular and molecular level approach of science in studying plants.
- To study about microorganisms, their impact on plants and various kind of plant diseases.
- To understand about modern concepts like plant molecular biology, plant genetic engineering and plant tissue culture.
- To introduce inter-disciplinary approaches like biostatistics and bioinformatics.
- To study about application part of botany viz., Medicinal plants and phytochemistry, Plant Breeding, Plant Biotechnology, Aesthetic Botany and Economic Botany.
- To enlighten the students about biodiversity, conservation and Intellectual Property Rights.

Programme outcomes

The program focuses on the unified nature of Plant Science and aims to generate young minds through competent teaching, and training on key technologies. Students will be encouraged to participate in research providing them opportunity to experiment their understanding and to reveal the relationship between the conventional education and research. Students after completing the M.Sc Botany can join various National and International govt organisations for their Ph.D through CSIR JRF and as Research Assistants in various Govt. and private institutions/Corporate sectors, plant based private companies and can also join teaching profession

SEMESTER I

HCT-	1.1: PHYCOLOGY, MYCOLOGY, BACTERIOLOGY AND VIROLOGY	48 Hours
Course object To un of alg To un licher Possible out By studying importance of life.	ctives: aderstand the occurrence, basic structure, organization and reproduction gae, fungi, lichen, viruses and bacteria. aderstand the reproduction and economic importance of algae, fungi, as, viruses and bacteria. comes: this course the students will learn about general account and economic f algae, fungi, lichens, viruses and bacteria with their impact on human	
Unit-I	Phycology: Introduction and History, with special reference to Indian work. Distribution and important systems of classification in Algae. Comparative account of Algal pigments. Structure and function of cell wall, flagella, food reserves, pyrenoids, eye spot and their importance in classification.	8hrs
Unit-II	Thallus organization, reproduction and life-cycle of the following: Cyanophyta, Chlorophyta, Xanthophyta, Bacillariophyta, Pheophyta and Rhodophyta.	8hrs
Unit-III	Economic importance of Algae: Algae as food and medicine, Algal blooms and toxic Algae.	2hrs
Unit-IV	Mycology: Introduction, diversity, general characters and classification of Fungi. (As per Alexopolous and Mims). Morphology, ultra-structure of fungal cell. Reproduction and life cycle in Myxomycotina, Mastigomycotina, Zygomycotina, Ascomycotina, Basidiomycotina and Dueteromycontina. Heterothallism and Parasexuality.	8 hrs
Unit-V	Detailed account of economic importance of Mushroom: Cultivation, edible and poisonous mushrooms fungi.	6hrs
Unit-VI	Lichens: General account and systematic of Lichens. Structure of thallus, reproduction and ecological significance.	4hrs
Unit VII	Viruses and Bacteria: Viruses: General account of plant and animal viruses. Transmission of plant viruses. Structure and reproduction in TMV and T4 phage. Prions and viroids.	6hrs
Unit VIII	Bacteria: Ultrastructure, classification, Bergey's Manual Trust, reproduction, nutrition and economic importance.	6hrs

- 1. Alexopoulos C. J. (1963). Introduction to Mycology.
- 2. Chapman V. J. and Chapman DJ (1973). The algae.
- 3. Biligrami K.S. and Saha L.S. (1992). A text book of Algae.
- 4. Jackson D.F. Algae and Man.
- 5. Burnett, J.H. Fundamentals of Mycology.
- 6. Aneja K. R. Experiments in Microbiology, Plant Pathology and Biotechnology 2003 New Age International (P) Limited, Publishers, New Delhi.
- 7. E Rosenberg, Microbial biology.
- 8. M. Pelezar, DR Reid and ECS Chan, Microbiology
- 9. R.C. Dubey and Maheshwari. D.K. 2002.A text book of Microbiology. S.C Chand and Co. Ltd.Ramnagar,NewDehli.
- 10. Sullia S.B and Shantaram.S.1998. General Microbiology. Oxford and IBH Publishing Co. Pvt. Ltd. New Dehli
- 11. Sharma O. P. and Shivani Dixit 2001 Experiments and Techniques in Microbiology, Plant Pathology, Ecology and Soil Science, Pollution, Biochemistry and Plant physiology. Pragati Prakashen meerut.

	HCT-1.2: BRYOPHYTES AND PTERIDOPHYTES	48 Hours
Course obj	ectives:	
• To	understand the classification and evolution of Bryophytes and	
Pter	idophytes.	
• This	s course is intended to provide the basic understanding of morphology	
and	reproduction in Bryophytes and Pteridophytes and their Economic	
imp	ortance.	
Possible or	itcomes:	
After stud	ying this paper students will be able to classify Bryophytes and	
Pteridophy	es. They will also be able to describe heterospory, origin of seed habit	
and evoluti	onary trends in stele and spore producing organs. Besides above, they	
will also be	able to understand the economic importance and experimental works in	
Bryophytes	and Pteridophytes.	
Unit I	Bryophytes: Introduction, distribution origin, evolution and	6hra
Unit-1	classification, economic and ecological importance.	01115
Unit-II	Range in thallus structure, anatomy and evolutionary tendencies in	8hrs
	sporophytes (Progressive sterilization of sporogenous tissue)	
Unit-III	Reproduction, life history, inter-relationships and affinities of various	10hrs
	groups (Marchantiales, Jungermaniales, Anthocerotales, Sphagnales	
	and Polytrichales) of Bryophytes.	
Unit-IV	Pteridophytes: Introduction, general characters, origin, evolution and	6hrs
	classification.	
Unit-V	Psilopsida: Comparative account of Psilophytales and Psilotales.	12hrs
	Lycopsida: Range in vegetative and reproductive structures in	
	Lycopodials and Isoetales.	
	Heterospory and seed habit.	
	Sphenopsida: Range in vegetative and reproductive structure	
	Pteropsida: Range in vegetative and reproductive structure, sori and	
	sporangia in ferns.	
Unit-VI	Stelar and soral evolution, economic importance and experimental	6hrs
	work in Ptridophytes	

- 1. Puri, P. 1980. Bryophytes. Atma Ram and Sons, Delhi.
- 2. Parihar, N. S. 1996. Bryophytes. Central Book Depot, Allahabad.
- 3. Parihar, N. S. 1996. Biology and Morphology of Pteridophytes. Central Book Depot, Allahabad.
- 4. Sporne, K. R. 1991. The Morphology of Pteridophytes. B.I. Publishing Pvt. Ltd., Bombay
- 5. Manju C Nair, Rajesh K.P. and Madhusudanan P.V. Bryophytes of Waynad in Western Ghats. Malabar Natural History Society, Kozikode.

	HCT-1.3: GYMNOSPERMS AND PALAEOBOTANY	48 Hours
Course obje	ectives:	
• This	course is intended to provide the basic understanding of morphology	
and r	eproduction in Gymnosperms and their Economic importance.	
• It als	o give details of Geological time scale and an understanding of the past	
histo	ry of the biosphere and evolution of plants through fossils.	
Possible out	comes.	
Δ fter succes	esfully completing this course, the student will be able to recognize	
morphologic	al anatomical and reproductive characteristics of Gymnosperms and	
the extinct	Bryonhytes Pteridonhytes and Gymnosperms The student will	
understand f	be evolutionary history of plant kingdom	
	Gymnosperms-Introduction Distribution General characters Origin	41
Unit-1	Evolution and Classification of Gymnosperms	4nrs
T T • 4 T T	Comparative account of habit anatomy and reproduction of	201
Unit-II	Cycadales: Cycas and Zamia	Zunrs
	Coniferales: Pinus Araucaria Thuia	
	Gnetales: Gnetum Enhedra and Welwitschia	
	Ginkgoales: Ginkgo	
TI:4 TIT	Economic importance of Gymnosperms	Alexa
UIIIt-III	Experimental works in Gymnosperms	41115
Unit-IV	Paleobotany - Objectives, Nomenclature and Geological time scale	4hrs
Unit-V	Fossilization and types of fossils, techniques for fossil study, factors	<u>4</u> hre
Unit- v	affecting fossilization.	5 111 5
Unit-VI	Study of morphology, anatomy and evolutionary trends of following	12hrs
	group of fossil plants: Psilophytales, Lepidodendrales, Calmitales,	
	Filicales, Coenopteridales, Pteridospermales, Bennettitales,	
	Pentoxylales, Cordiatales, Cycadales, Coniferales,	

- 1. Bhatnagar, S.P. and Moitra, A. 1996. Gymnosperms. New Age International Pvt. Ltd., New Delhi.
- 2. Coulter and Chamberlin, J. M. 1978. Morphology of Gymnosperms.
- 3. Dutta, S.C. 1973. An introduction to Gymnosperms.
- 4. Sporne, K. R. 1967, Morphology of Gymnosperms.
- 5. Stewart W. N. and Rathwell G.W. 1993. Palaeobotany and Evolution of Plants.
- 6. Shila A. C. and Mishra S. D. 1975. Essentials of Palaeobotany.

	SCT-1.1: PLANT PATHOLOGY	48 hrs
Course obje	ctives:	
• This	paper deals about plant diseases caused by bacteria, fungi & viruses.	
• To u	nderstand mechanism of infection, diagnosis procedure and control	
meas	ures.	
Possible out	comes.	
Learner will	definitely realize how food production is severely is affected by	
pathogens. T	They will participate in food production by eliminating major threats	
that affect pla	ants and management practices.	
F-		
Unit-I	Introduction, scope and significance of plant pathology, significant	4 hrs
	contributions of plant pathologists. Importance of plant diseases.	
	Methods of studying plant diseases, classification of plant diseases.	
Unit-II	Major diseases caused by fungi, bacteria, viruses, mycoplasma,	8 hrs
	nematodes, angiosperm parasitic diseases, non-parasitic diseases on	
	cereals, pulses, vegetables and oil crops.	
Unit-III	Pathogenesis: penetration - indirect entry of pathogens through	8 hrs
	natural openings, wounds, root hairs, buds, direct penetration. Role of	
	toxins in pathogenesis- Introduction, microscopic system, bioassay,	
	Host-relation toxins, non-host selective toxins, control of toxin	
	biosynthesis	
Unit-IV	Mode of transmission of pathogens by seeds air, soil, water, vectors,	6 hrs
	contagious, animals. Effect of environmental factors on disease	
	development disease epidemiology and forecasting.	
Unit-V	Detection and diagnosis of plant pathogenesis- Introduction host	8 hrs
	range and symptomatology, morphology of the causal organism,	
	selective media, biochemical markers-substrate metabolism, fatty	
	acia profiles (FAME analysis), protein analysis, serological	
	techniques, nucleic acid techniques, choice of diagnostic techniques.	
Unit-VI	Management of plant diseases by conventional methods: cultural,	4 hrs
	Chemical and Diological.	10-
Unit-VII	Nycoparasitism of soil borne plant pathogens- biotropic and	10 hrs
	necrotropic parasitism, techniques for studying mycoparasitism in netural system, applosical factors offecting peresitien distribution of	
	matural system, ecological factors affecting parasitism, distribution of	
	nycoparasites, inycoparasites in biological control. Predatory and	
	parastic lungi - predatory nypnomycetes, and nymenomycetes.	

- 1. Singh, R.S. 1973. Plant Disease. Oxford and IBH Pub. Co., New Delhi.
- 2. Agrios, G.N. 1994. Plant Pathology. 2nd Edn. Academic Press New York.
- Johnston, A. and Both, C. 1983. Plant Pathologists Pocket Book. 2nd Edn. Commonwealth Mycological Institute, Oxford and IBH Pub. Co., Calcutta.

- Rangaswamy, G. and Mahadevan, A. 2002. Diseases of Crop Plants in India. Prentice Hall of India Pvt.Ltd., New Delhi.
- 5. Mehrotra, R.S. 1983. Plant Pathology. Tata McGraw Hill Pub. Co., Ltd., New Delhi.
- 6. Vidhyasekaran, P. 2004. Encyclopedia of Plant Pathology. Viva Books Pvt. Ltd., New Delhi.

	SCT-1.1: PHYTOGEOGRAPHY AND EVOLUTION	48 hrs
Course obje	ectives:	
• The	purpose of the course is to give a fundamental understanding of the	
distri	bution of vascular plants and of the basic models which describe it.	
• In pa	articular, the students will know about the floristic regions and plant	
form	ations of the Planet, in the light of previous continental and climatic	
evolu	ation.	
Possible out	comes:	
The, the stu	ident will deepen the applied points of view floristic recording of	
specific habi	itats and the assessment of their naturality on the basis of chronological	
and life form	n spectra of the flora.	
Unit-I	Phytogeographical regions of the World. India: Western Himalaya,	8hrs
	Eastern Himalaya, Indus plane, Gangetic sub-mountain zone,	01115
	Temperate zone, Alpine zone. General characters of flora of India.	
	Native taxa, naturalization of exotic taxa.	
Unit-II	Floristics: Floristic study of the world and India.	4hrs
	Continental drift: A general account, tectonic movements, disjunct	
	distribution, dispersal, migration and endemics.	
Unit-III	Plant Distribution: Continuous, discontinuous, Centre of origin	12hrs
	endemic, bathymetric distribution, Centre of origin of crop plants.	
	Evolution and Plant Migration, Dispersal, isolation, migration and	
	barriers, vicarious species, relict species, isofloras, polytopy, centers	
	of origin of crop plants.	
Unit-IV	Darwin and origin of species, models of speciation- Allopatric	12hrs
	speciation, Sympatric speciation, Statispatric speciation. Isolating	
	mechanism and rate of speciation. Genetic variation-inbreeding	
	depression, protein polymorphism, variation in nucleotide sequences.	
	Formation of species.	
Unit-V	Evolution of sex in plants-Asexual reproduction, origin and evolution	12hrs
	of sex organs, alternation of generations. Parthenogenesis and its	
	applications.	

- 1. Alberts, B. Bray, D. Lewis, Ralf M., Roberts, K and Watson, J.D. 1994. Molecular Biology of Cell. 3rd Edition Garland publishing co. New York.
- 2. Arumugam, N. 1992. Organic evolution. Saras Publication, Nagercoil.
- 3. Cain, S.A. 1944. Foundations of Plant Geography. Harper & Bros, NY.
- 4. Good, R.D. 1974. The Geography of flowering Plants. 3rd edition, Long Mans, London.
- 5. Jha, A. P. 1993. Genes and Evolution. Mac Millan India Ltd, New Delhi.
- 6. Kumar, H.D. 1992. Modern concept of Ecology. Eighth revised edition, Vikas Publishing House Pvt. Ltd. Bangalore.

- 7. Lawrence, G.H.M. 1965. Taxonomy of vascular plants. The McMillan Company, New York.
- 8. Radford, A.E. Dickinson, W.C. Massey, J. R. and Ben, C.R. 1974. Vascular Plant Systematics. Harper and Row, New York. London.
- 9. Shukla, R. S. and Chandel, P. S. 1989. Plant Ecology. S. Chand and Company Ltd. New Delhi.
- 10. Solomon, P. Elder, Berg, R. Linda and Martin, W. Diana 2003. Biology Brooks / cohe. Thomson learning. 6th edition. Prentice Hall University of Massachusetts, Amherst.
- 11. Stickberger, M.W. 1994. Evolution. Mac Millan Publishing co, New Delhi.
- 12. Strickberger, M. W, 2002. Evolution. Jones and Barlett Publishers. Sudbury.
- 13. Teresa Andesirk, Gerald Audesirk and Bruce, E. Byers. 2003. Biology-Life on Earth. 6th edition. Prentice Hall University of Massachusetts, Amherst.
- Valentine, D.H. 1972. Taxonomy, Phytogeography and Evolution. Academic Press, London. New York.
- 15. Webber, P and Punnett, N. 1999. Physical geography and people Stanley. Thomas (Pub) Ltd. England.

	SCT-1.1: BIOSTATISTICS AND BIOINFORMATICS	48 hrs
Course obje	ctives:	
• To st	tudy about basics of statistics and utilization of statistical method in	
biolo	gy.	
• To st	udy about modern tools of bioinformatics an inter-disciplinary subject	
to he	Ip the biologists in research perspectives.	
Dessible out		
The course y	comes:	
of hislagical	and interpretation	
of biological	samples through statistical methods. The course will give knowledge	
about moder	in tools of bioinformatics. Students will learn necessary skills in the use	
of databases	and online tools related to biological data.	
Unit-I	Biostatistics -Introduction and scope of Biostatistics. Basic concepts	2 hrs
cint I	of Biostatistics: Variables, constants, observation, data, population.	- 115
Unit-II	Types and collection of data: Sampling, primary data, Secondary	4 hrs
	data. Presentation of data: Line diagram, bar diagram, pie diagram,	• •
	graphic presentation of data.	
Unit-III	Measurement of central tendency: Mean, Median, Mode. Measures of	6 hrs
	dispersion: Range, Quartile deviation, Mean deviation, Standard	0 1115
	deviation, Standard error, Coefficient of variation.	
Unit-IV	Probability and Probability distribution: Binomial, passion and	8hrs
	normal distribution. Testing of Hypothesis: Null hypothesis,	01115
	alternative hypothesis, z test, t test and chi-square test.	
Unit-V	Correlation and regression: Scatter diagram, simple linear regression	4hrs
	and nonlinear regression, correlation and correlation coefficient and	
	application. One way and two way analysis of variance and	
	multivariate analysis of variance.	
Unit-VI	Computer application: Knowledge of computer systems, hardware	8 hrs
	and software, CPU and other peripheral devices, software packages,	0 144 0
	programming language, scientific application of packages.	
Unit-VII	Internet: The World Wide Web and local area network (LAN), wide	8hrs
	area network (WAN). Information retrieval, communication using	
	internet, web data base directories, search engine.	
Unit-VIII	Biological Databases, Bioinformatics tools, Sequence Alignment	8hrs
	tool, Database Searching (BLAST, FASTA), Comparative genomics,	
	Structural and Functional genomics.	

- 1. Bliss CK, Statistics in Biology, 1970.
- 2. Daniel WW, Biostatistics, 1995
- 3. Minieka E and Kuzeja Z.D. Statistics for businesses with computer application. 2001
- 4. Karne, Fundamental Concepts Of Bioinformatics 1ed, Pearson publishers, 2012

- 5. Patil C. S., Ajit Gangawane and Srinath Rao, Bioinformatics and Bioinformation (2011) APH Publishing Corporation. New Delhi.
- Arumugam N., Gopi A., Sundaralingam R., Meena A., and Kumarasen V Biostatistics Computer Application Bioinformatics instrumentation (2010) Saras publication Nagarcoil (TN).
- 7. Irfan A Khan and Atiya Khanum, Emerging trends in Bioinformatics (2002) Ukaaz Publications Hyderabad.
- 8. Irfan A khan and Atiya Khanum, Recent advances in Bioinformatics (2002) Ukaaz Publications Hyderabad.
- 9. Padmini E. Biochemical calculations and Biostatistics (2007) Books and Allied (P.) Ltd. Kolkata
- 10. Sudara Rajan S. and Balaji R. Introduction to Bioinformatics (2003) Himalaya Publishing House.
- 11. Dhamu K. P. and Ramamoorthy K 2009 Fundamentals of Agriculture Statistics Scientific publishers (India) Jodhpur.
- 12. Sharrma T. R. 2009 Genome Analysis and Bioinformatics I. K. International Publishing House Pvt. Ltd. New Delhi.

HCP-1.1: PHYCOLOGY, MYCOLOGY, BACTERIOLOGY AND VIROLOGY

Phycology

	Cynophyta: Microcystis,	
	Spirulina, Scytonema and Oscillatoria	
	Chlorophyta: Chlymydomonas, Volvox, Pediastrum, Scenedesmus, Hydrodictyon	
	Diatoms : Pinnate and Centric – Synendra, Pinnuria, Navicula & Cyclotella	
	Xanthophyta : <i>Botrydium</i>	
	Phaeophtae : Dictyota and Ectocarpus	
	Rhodophyta: Polysiphonia and Gracillaria	
	Economic important product : Agar-Agar, Spirulina tablets	
Mycology		
	Phycomycetes : Mucor, Phytophthora, Saprolegnia	
	Ascomycetes : Saccharomyces, Xylaria, Aspergillus, Peziza	
	Basidiomycetes : Polyporus, Lycoperdon, Ustilago, Agaricus	
	Duetoromycetes : Alternaria, Cercospora, Cladosporium	
Bacteriology and Virology		
	Staining of Bacteria (Positive, Negative & Gram's staining)	
	Demonstration of Bacterial motility by hanging drop method	
	Test for coliform Bacteria- Streak plate method	
	Viral disease of Tobacco, Papaya & Bhendi.	

HCP-1.2: BRYOPHYTES AND PTERIDOPHYTES

Bryophytes: Study of vegetative habit, Anatomy and Reproductive Structures of the following taxa:

Targionia, Marchantia, Porella, Pellia
Anthoceros, Notothyllus
Sphagnum, Polytrichum & Bryum
Comparative structure of sporophytes of Bryophytes

Pteridophytes: External morphology, Anatomy & reproductive structures of the following:

- Psilotum and Lycopodium Selaginella, Isoetes, Equisetum
- Ophiglossum and Botrychium
- Ophiglossum and Bolrychium
- Angiopteris, Pteris & Hymenophyllum
- Marselia, Salvinia and Azolla

HCP-1.3: GYMNOSPERMS AND PALAEOBOTANY

Gymnosperms :	Study of vegetative habit, Anatomy and reproductive structure of the
following	

	Cycas and Zamia	
	Pinus, Taxus and Thuja	
	Gnetum, Ephedra, Welwitschia	
	Ginkgo	
Paleobotany: Study of fossil forms using moulds, charts, photography and slides		
	Lepidodendron	
	Calamites	
	Lyginopteris	
	Geological Time scale using chart	

SCP-1.1: PLANT PATHOLOGY		
1. Classification of plant disease		
Fungal: (Powdery mildew of cluster bean, leaf blight of paddy, leaf spot of chilli, frog eye		
spot, leaf spot of tobacco)		
Bacterial: (Citrus canker)		
Viral: (Mosaic, leaf curl, pepper wilt, bunchy top of banana, katte disease of cardamom)		
Mycoplasma: (little leaf of brinjal, grassy shoot of sugar cane)		
Nematode: (root of brinjal/tomato)		
Angiospermic parasites: (Loranthus, Viscum, Cuscuta)		
2. Pure culture – identification of fungi based on conidia and mycelial morphology.		
3. Spore release by wash-off method		
4. Disease assessment		
5. Anthracnose disease in French bean/ Cluster bean		
6. Downy mildew of pearl millet		
7. Leaf rust of coffee		
8. Disease of crop plants - Fungal, mycoplasmal, bacterial, nematodal, viral, angiospermic		
parasitic diseases (other than above mentioned disease)		
SCP-1.1: PHYTOGEOGRAPHY AND EVOLUTION

- 1. Floristic regions of India.
- 2. Evolutionary concepts
- 3. Drawing maps of continental drift
- 4. Listing plants of AMWU campus
- 5. Listing of wild edible plants and
- 6. Listing of medicinal plants and their uses in Vijayapur area.
- 7. Studying species distribution and its measurements.
- 8. Examples of exotic / invasive species

s	SCP-1.1: BIOSTATISTICS AND BIOINFORMATICS
Biostatistics	
Mea	sures of central tendency
Mea	sures of Dispersion
Corr	relation and Regression
Bioinformatics	
Biol	ogical Databases
a) N	Jucleotide Database
	1. GenBank
	2. Embl
	3. DDBJ
b) H	Protein Database
	1. Swiss-Prot
	2. PDB
Sequ	ence collection from NCBI
Align	nment Tool
	1. PSA (Pairwise Sequence Alignment-Align tool)
	2. MSA (Multiple Sequence Alignment- clustal w tool)
Data	base Searching Tool
	1. BLAST
	2. FASTA

SEMESTER II	
-------------	--

нс	T-2.1 ECOLOGY AND ENVIRONMENTAL BIOLOGY	48 hrs
Course obje This ecolo applic To un it at g	ctives: course aims to introduce the students to the concepts and principles of gy, population, community and ecosystem structure and function and cation of these concepts to solve environmental problems. Inderstand the importance of environment and the problems related with clobal and local level.	
Possible out Students will Students will will underst understandin system and e	comes: I understand the importance of nature surrounding us and their role. I know the disturbance of climatic changes on human beings. Students and the evil effect of global warming and UV radiation. By g these concepts, the student will be able to develop attitude, value thics towards environment related issues.	
Unit-I	Scope of ecology in environmental management. Climatic factors: interaction of ecological factors- light-temp, precipitation, humidity, wind and atmospheric gases; Fire factor; Edaphic factors-composition of soil- formation of soil, soil profile, soil classification, soil components and properties, soil erosion and conservation.	8hrs
Unit-II	Ecosystem – Structure and function; Energy flow, food chain, tropic levels. Ecological pyramids, charting of ecology; pathway and measurement rate; primary and secondary metabolic activities.	6hrs
Unit-III	Biogeochemical cycles : Hydrological, gaseous (Carbon and Nitrogen) & sedimentary cycles, nutrient budget with reference to nitrogen, and carbon sequestration, climate change protocol, global warming issues. Ecological succession: models, trends and causes; time factor and stability.	8hrs
Unit-IV	Population ecology: attributes, density and distribution, natality, mortality, age distribution, population growth, growth rate composition, Hardy Weinberg law.	8hrs
Unit-V	Major ecosystems of the world: pond, river, marine, deserts, tundra and forest, productivity of different ecosystems: grassland, forest, shola, savanna, thar, Chillka lake, Western and east Himalaya, Western Ghats. Ganga action plan.	4hrs
Unit-VI	Environmental pollution: Introduction, causes, effects and control measures of water pollution, air pollution, soil (Land) pollution, noise pollution, acid rain, global warming, ozone depletion and public health	6hrs
Unit VII	Remote sensing and GIS: Basic and fundamental concepts of remote	4hrs

	sensing.	
Unit VIII	Environmental Impact Assessment: Introduction, process and methods of impact analysis. International biological program, UNESCO, MAB. UNEP.	4hrs

- 1. Ambasht, K.S. 1969. Plant Ecology. Published by Student's Friends and Co., Lanka Varansi, India.
- 2. Anji Reddy, M. 2006. "A Textbook of Remote Sensing and Geographical information System". 03rd Edition B.S. Publications.
- 3. Botkin, D.B. and E.A. Keller. 2004. Environmental Science. 5th ed. John Wiley and Sons.
- 4. Bernhardsen, T. 1999. Geographic Information System: An Introduction. 02nd Edition, John Wiley and Sons.
- 5. Canter, L.W. 1996. Environmental Impact Assessment. McGraw Hill, New York.
- 6. Charan and Anil, K. 1992. Plant Geography. Rawat Publications. Jaipur.
- 7. Chhatwal, G.R. and M.C. Mehra. 1989. Environmental Air Pollution and its Control. Anmol Publ., New Delhi.
- 8. Curran, P. 1985. Principles of Remote Sensing. Longman, Loudon.
- 9. Eug. Warming. 1998. Ecology of Plants. Ambey Publications, New Delhi.
- 10. Eugene P. Odum. 1996. Ecology. Sinauer Associates Inc Publishers, Sunderland, USA.
- 11. Goel, P.K. 1997. Water Pollution Causes, Effects and Control. New Age International Pvt., Ltd., new Delhi.
- 12. Kumar, A., Bohra, C. and L.K. Singh. 2003. Environment, Pollution and Management. A.P.H. Publishing Corporation, New Delhi.
- 13. Mido, Y. and S.A. Iqbal. 1995. Chemistry of Air and Air Pollution. Discovery Publishing House, New Delhi.
- 14. Mohan P. Arora. 1995. Ecology. Himalaya Publishing House, Bombay.
- 15. Ross, R.D. 1998. Air Pollution and Industry. Van Norstrand Company Publication.
- 16. Sapru, R.K. 1987. Environment Management in India. Patel Enterprises, New Delhi.
- 17. Shukla, S.K. and P.R. Srivastava. 1992. Concepts in Environmental Impact Analysis. Common Wealth Publishers, New Delhi.
- 18. Tripathy, D.P. 1999. Noise Pollution. A P H Publishing Corporation, New Delhi.
- 19. Verma. P.S. and Agarwal, V.K. 1992. Principle of Ecology. Published by S. Chand and Company Ltd., New Delhi.
- 20. Williams, I. 2001. Environmental Chemistry. John Wiley and Sons, Ltd., New York.

	HCT-2.2 CELL AND MOLECULAR BIOLOGY	48 hrs
Course obje	ctives:	
 To ur and e To in biolog Basic with the second secon	nderstand the structure and function of basic components of prokaryotic ukaryotic cells, especially its membrane organization and organelles. ntroduce to rapid contemporary changes witnessed in plant molecular gy. e organization of genetic material and the realms of events associated replication and gene expression will be examined.	
Possible out Students will and genetic r regulation of regulation.	comes: I gain knowledge about the basic and fundamental organization of life naterial and their applications. It will also impart knowledge about the molecular mechanisms involved in the control of gene expression and	
Unit-I	Prokaryotic cell, ultrastructure of mycoplasma, bacteria. Structure of eukaryotic cell. Plasma membrane – organization and function. Cytoskeleton – microtubules, cilia and flagella. Structure and function of endoplasmic reticulum, Golgi complex, Ribosomes, mitochondria, chloroplast, lysosomes and peroxisomes. Structure and function of nucleus and nucleolus.	10hrs
Unit-II	Structure and organization of eukaryotic chromosome, centromeric and telomeric structure, Law of DNA constancy and C-value paradox. Special chromosomes – B-chromosomes, polytene and lampbrush chromosomes.	6hrs
Unit-III	Mechanism of cell division: Cell cycle regulatory enzymes and proteins, chiasma formation, mechanism of recombination, synaptonemal complex.	4hrs
Unit-IV	Chromosomal Aberrations: types and evolutionary significance. Numerical changes in chromosomes – euploidy, haploidy, polyploidy, aneuploidy and evolutionary significance.	6hrs
Unit-V	Mutagenesis – physical and chemical mutagens, molecular basis of mutation, DNA repair mechanism. Transposable elements, transposon tagging of genes, genetic and evolutionary significance.	4hrs
Unit-VI	DNA replication, transcription (RNA synthesis and processing), DNA and RNA polymerases, genetic code, translation.	8hrs
Unit VII	Cell communication: Membrane transport principles-active and passive transport, Brief on cell signaling with reference to plant systems.	4hrs
Unit VIII	Gene isolation and characterization through PCR, RAPD, RFLP, AFLP, SSR markers.	6hrs

- 1. Allison.A. 2007. Fundamental Molecular Biology. Blackwell Publishing, UK.
- 2. Bob B Buchanan, Wilhelm Gruissem, Russel L Jones (2000). Biochemistry and Molecular biology of plants. I K International Pvt. Ltd.
- 3. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular biology of the cell (IV Edn). Garland Science, Taylor and Francis group
- 4. Cohn, N.S. 1969. Elements of cytology. Horcourt and World Inc. NewYork.
- 5. D Peter Snustad, Michael J Simmons (2010). Principles of genetics (V Edn). John Wiley and Sons.
- 6. Darlington, C.D. 1987. Recent advances in cytology. J A Churchil. London.
- 7. Datnel, Lodish and Baltimore, 1986. Molecular Cell Biology-W.H. Freeman & Company, New York.
- 8. David A Micklos, Greg A Freyer with David A Crotty (2003). DNA Science: A first course (II Edn).L K Inter
- 9. David P Clark (2010). Molecular biology. Elsevier.
- 10. De Robertis& De Robertis, 2004. Cell and Molecular Biology. Lippincott. Williams and Wilkins. USA.
- 11. Freifelder, 1990. Molecular Biology, Narosa Publishing House, New Delhi.
- 12. Jain, H.K. 2000. Genetics, Oxford & IBH, New Delhi
- 13. Jocelyn E Krebs, Elliott S Goldstein, Stephen T Kilpatrick (2011). Lewin's Genes X. Jones and Bartlett Publishers
- 14. Mary A. Schuler Raymond and E.Zrelinski, 2005. Methods in Plant Molecular Biology, Academic Press an imprint of Elsevier
- 15. Peter Porella, 1998. Introduction to Molecular Biology, McGraw Hill, New York.
- 16. Rastogi, S.C. 2004. Cell Biology. New age International Pub. New Delhi.
- 17. Robert J Brooker (2009). Genetics: analysis and principles (III Edn). McGraw Hill.
- 18. Schuler MA and Selinski, R. 1989. Methods in molecular Biology
- 19. Sharma. A.K. and Sharma, A. 1980. Chromosome Techniques Theory and Practice. Oliver and Boyd, London.
- 20. Singh and Tomar.2004. Cell Biology. Rastogi Publishers, Meerut.
- 21. Swanson, C.P. 1972. Cytology and Cytogenetics. Mac Millan. New York.
- 22. Walker, J.M and R. Rapley, 2003. Molecular biology and Biotechnology, IV Edition. Panima Publishing Corporation, Bangalore.

	HCT-2.3: GENETICS AND EVOLUTION	48 hrs
Course obje	ectives:	
• This Inher	course is intended to provide the basic understanding of genetic, itance, variation.	
 The quant Evolution Description high 	paper will deal with Mendelian and non-Mendelian inheritance, titative genetics, molecular markers and linkage mapping. utionary biology is to teach past history & origin of living organisms. ribes concepts, theories & experimental evidences that support origin of order organism from primitive one.	
Possible out	comes:	
The student Mendelian i understandin understand survived with human being	s are expected to have better understanding of basic principles of nheritance, concept of linkage and mutagenesis. It also develops the ag of management of inherited diseases. Learners will certainly how biological organisms including human beings have evolved, th natural adaptations possibilities of destruction for the survival of gs & other organisms.	
Unit-I	Mendelian principles, alleles, linkage and crossing over, genetic maps. Sex determination in plants. Extrachromosomal inheritance, somatic cell genetics. Inheritance of quantitative characters.	8hrs
Unit-II	Concept of genes – fine structure of gene, split genes, overlapping genes, included genes. Recombination in bacteria and phages – conjugation, transformation and transduction.	8hrs
Unit-III	Gene expression in prokaryotes and eukaryotes.	4hrs
Unit-IV	Genetic engineering – Restriction endonucleases, ligase, vectors, gene cloning techniques, polymerase chain reaction, southern and northern blotting.	6hrs
Unit-V	Origin of life, chemical evolution, molecular evolution. Theories of evolution – Lamarckism, neo-Lamarckism, Darwinism, neo- Darwinism, Mutation theory and synthetic theory.	6hrs
Unit-VI	Population genetics and evolution – Mendelian population, gene pool, gene frequency, genetic drift, founder effect, genetic polymorphism. Hardy-Weinberg law, mechanism of speciation	8hrs
Unit VII	Molecular Evolution: Concepts of neutral evolution, molecular divergence and molecular clocks; Molecular tools in phylogeny, classification and identification; Protein and nucleotide sequence analysis; origin of new genes and proteins; Gene duplication and divergence.	8hrs

- 1. Goodenough U, 1990. Genetics. Armugam N, 1992. Organic evolution.
- 2. Basu.S.B. and M.Hossain.2004. Principles of Genetics. Books and Allied (P). Ltd, Kolkatta.

- 3. Benjamin, Levin. 2004. Genes VIII.
- 4. Benjamin Lewin (2000). Genes VII. Oxford university press. Blackwell Science Ltd.
- 5. Peter Snustad D, Michael J Simmons (2010). Principles of genetics (V Edn). John Wiley and Sons.
- 6. Daniel L Hartl, Elizabeth W Jones (2009). Genetics: Analysis of genes and genomes (VII Edn). Jones and Bartlett publishers.
- 7. Endress PK, 1994. Diversity and evolutionary biology of tropical flowers.
- 8. Gardner E J, Simmons M J, Snustad D P (1991). Principles of Genetics (III Edn). John Wiley and Sons Inc.
- 9. Gardner, E.J. 1972. Principles of genetics. Willey Eastern Pvt.Ltd.
- 10. George Ledyard Stebbins (1971). Process of Organic evolution.
- 11. Gupta, P.K, 2000. Gentics. Rastogi publications, Meerut.
- 12. Gurbachan and S. Miglani, 2000. Basic Genetics, Narosa Publishing House, New Delhi.
- 13. Gurbachan S Miglani (2002). Modern Synthetic theory of evolution.
- 14. Katy Human (2006). Biological evolution: An anthology of current thought. The Rosen publishing
- 15. MaxtoshiNei, Sudhir Kumar (2000). Molecular Evolution and phylogenetics. Oxford University
- 16. Monroe W Strickberger (1990). Evolution. Jones and Bartlett publishers Press.
- 17. Reigner, R.A. A. Michalis and M.M. Green, 1976. Glossary of Gentics and Cytogenetics. Springer-Verlag, New York.
- 18. Robert J Brooker (2009). Genetics: Analysis and principles (III Edn). McGraw Hill.
- 19. Roderic D M Page, Edward C Holmes (1998). Molecular Evolution: A phylogenetic approach.
- 20. Sinnot, E.W. Dunn, L.E. and Dobzhansky, T. 1973. Principles of Genetics. McGraw Hill. New York.
- 21. Snustad D P, Simmons M J (2000). Principles of Genetics (III Edn). John Wiley and Sons.
- 22. Stickberger MW, 1994. Evolution.
- 23. Strickberger (2005). Genetics (III Edn). Prentice Hall of India Pvt. Ltd.
- 24. Strickberger, M.W. 1976. Genetics. Mac Millan. New York.
- 25. Swaminathan, M.S, P.K.Gupta and V.Singa. 1983. Cytogenetics of crop plants. Macmillan India Ltd, New Delhi.
- 26. Swanson, C.P. 1972. Cytology and Cytogenetics. Mac Millan. New York.

	SCT-2.1: METHODS IN PLANT SCIENCE	48 hrs
Course obj	ectives:	
• To a	cquire the knowledge about biological techniques.	
• To l	know about the basic concepts, principles and significance of various	
anal	ytical and molecular techniques.	
• To u	inderstand the various anatomical techniques.	
Descible on	taomas	
The course samples. The biological te	will nurture the knowledge on biological samples especially plant ne course will give an expertise in understanding the various important echniques to be employed in the field of botany.	
Unit-I	Microscopy – Principles and working mechanism of transmitted and incident microscopy. Principles, working mechanism and uses of Dark field microscopy, polarization microscopy, fluorescence microscopy, phase contrast microscopy. Electron microscopy – TEM, SEM_STM	8hrs
Unit-II	Processing of plant material for light and electron microscopy. Principles and uses of microtomy; Fixing of plant material, dehydration, staining procedures.	6hrs
Unit-III	Centrifugation techniques – differential, density gradient centrifugation. Spectroscopic methods – ultraviolet and visible spectroscopy, Raman spectroscopy, nuclear magnetic resonance technique, fluorescence and mass spectroscopy.	8hrs
Unit-IV	Isolation and purification of RNA, DNA (genomic and plasmid), different separation methods. Generation of genomic and cDNA libraries in plasmid, phage, cosmid, BAC and YAC vectors. Expression vector and expression of protein in brief, Autoradiography, Method of DNA sequencing, micro array technique.	12hrs
Unit-V	Techniques of protein isolation, purification and separation – chromatographic techniques, ion exchange, gel filtration and affinity chromatography, high performance liquid chromatography.Electrophoresis techniques – agarose, polyacrylamide electrophoresis, capillary and immuno-electrophoresis.	10hrs
Unit-VI	Principles and applications lasers, tracer techniques in biology, radiolabelling –carbon dating, molecular imaging of radioactive material, safety guidelines.	4 hrs

- 1. Ackerman E A, Ellis L E E, Williams L E (1979). Biophysical Science. Prentice-Hall Inc.
- 2. Berlyn GP and Miksche JP. 1976. Botanical micro-techniques and cytochemisty.
- 3. Chang R (1971). Basic principles of spectroscopy. McGraw Hill.
- 4. Friefelder D. Physical Biochemistry. W H Freeman and Co.

- 5. Garry D Christian, James E O'reilvy (1986). Instrumentation analysis. Alien and Bacon, Inc.
- 6. Gordon MH and Macrae M. 1987. Instrumental analysis in the biological sciences.
- 7. Henry B Bull (1971). An Introduction to physical biochemistry. F A Devis Co.
- 8. Mahadevan A, Sridhar R (1996). Methods in Physiological Plant Pathology. Sivakmi Publications.
- 9. Perkampus H (1992). UV-VIS Spectroscopy and its applications. Springer-Verlag.
- 10. Pesce A J, Rosen C G, Pasty T L. Fluorescence Spectroscopy: An introduction for Biology and
- 11. Robyt JF and White BJ, 1987. Biochemical techniques: theory and practice.
- 12. Salle A J (1974). Fundamental principles of Bacteriology. McGraw Hill.
- 13. Stanford J R (1975). Foundation of Biophysics. Academic press.
- 14. Wilson K and Walker JM.1994. Principles and techniques of practical biochemistry.
- 15. Allan peacock, H. 1966. Elementary Microtechnique. Edward Arnold Publ.
- 16. Bancroft, J.D, 1967. An introduvction to Histochemical technique. Appleton, Century Crofts, New York.
- 17. Berlyn, P.G, 1986. Botanical microtechnique and cytochemistry.
- 18. Duddington, C.L, 1960. Practical microscopy. Pitman publ.
- Gahan, P.B, 1984. Plant histochestry and Cytochemistry--- An introduction. Academic press, U.K.
- 20. George, E.F. and Sherrington, P.D. 1984. Plant propagation by tissue culture. Freeman Publishers, London.
- 21. Gray, P. 1964. Hand book of basic microtechnique. MacGrawHill , New Delhi.
- 22. Jayaraman, J. 1992. Tecniques in Biology.HigginBothams Pvt Ltd, Chennai.
- 23. Johnson, D.A, 1940. Plant microtechnique. MacGrawHill , New Delhi.
- 24. Kelkar, S.S., P.M. Kare and H.J. Jhala 1984. Gel immuno diffusion techniques in the Research laboratory medicine. New Delhi.
- 25. Kiernan, J.A, 1990. Hisological and Histochemical Methods. Theory and practice. Permagon press, U.K.
- 26. Krishnamurthy, K.V, 1988. Methods in plant histochemistry. Viswanathan printers and publishers, Chennai.
- 27. Lindsley, K. 1992.Plant tissue culture manual. Kluwer Academic publishers.
- 28. McClung, C.L, 1961. Hand book of Microscopic technique. MacGraw Hill, New Delhi.

	SCT-2.1: PLANT GENETIC ENGINEERING	48 hrs
Course obje	ctives:	
• This	course is designed to provide a contextual and inquiry based learning of	
mode	rn day advances in the field of recombinant DNA technology and	
mole	cular farming.	
• The r	nain objective of this course is to familiarize students with techniques	
of ge	enetic manipulations of plants and quality enhancement of plant	
produ	acts through the use of recombinant DNA technology.	
Possible out	comes:	
Students will	acquire understanding of basic principles and modern age applications	
of recombination	ant DNA technology. Students should be able to learn the utility of	
genetic engi	peering tools that are helpful in creation of transgenic plants for better	
production	earning molecular and technical skills along with applications of the	
instrumentati	on.	
TT . • 4 T	Introduction to Genetic Engineering: Concepts and scope of genetic	21
Unit-1	engineering. Milestones in Plant Recombinant DNA Technology.	2hrs
	Importance of gene manipulation in future perspectives.	
T T •4 T T	Tools in Genetic Engineering: Enzymes in genetic engineering -	101
Unit-II	Restriction endonucleases- types and action, All DNA modifying	IOhrs
	enzymes. Cloning vectors: Plasmids isolation and purification- Ti	
	Plasmid, pBR322, pUC –series. Phage vectors-M13 phage vectors,	
	Cosmids-Types, Phasmids or Phagemids, Shuttle vectors-types. YAC	
	and BAC vectors, Lambda phage vectors, Lamda phage DNA as a	
	vectors. Cloning vectors and expression vectors.	
Unit III	Techniques for plant Transformation: Integration of plant tissue	Qh ma
01111-111	culture in to plant transformation protocols. Introduction,	onrs
	Agrobacterium mediated gene transfer, The Ti-plasmid, The process	
	of T-DNA transfer and integration, Practical applications of	
	Agrobacterium-mediated plant transformation, Transformation in	
	Plants, Direct gene transfer methods.	
Unit-IV	The genetic manipulation of herbicide resistance: The use of	12hrs
	herbicide in modern agriculture, Strategies for engineering herbicide	121115
	resistance, The environmental impact of herbicide-resistant crops.	
	The genetic manipulation of pest resistance: GM strategies for insect	
	resistance. The Bacillus thuringiensis approach to insect resistance,	
	The Copy Nature Strategy, Insect resistant crops and food safety. The	
	genetic manipulation to plant disease resistance: Plant pathogen	
	interaction, Natural disease resistance pathways-Overlap between	
	pests and diseases, Biotechnological resistance to disease resistance.	
	Transgenic approaches to viral disease resistance.	
Unit-V	Engineering stress tolerance: The nature of abiotic Stress, the nature	4hrs
	of Water deficit stress, Targeted approaches towards the manipulation	

	of tolerance to specific water deficit stresses.	
Unit-VI	The Improvement of crop yield and quality: The genetic manipulation of fruit ripening, engineering plant protein composition for improved	4hrs
	nutrition, The genetic manipulation of crop yield by enhancement of photosynthesis.	
Unit-VII	Molecular Farming/Pharming: Metabolic engineering of plants. Carbohydates and lipids, Molecular farming of proteins, Economic consideration of molecular farming.	4hrs
Unit-VIII	Future prospects for GM crops: The current state of transgenic crops, Concerns about GM crops, the regulations of GM crops and products.	4hrs

- 1. A. Slater, N. Scott and M. Fowler. 2003. Plant Biotechnology: The genetic manipulation of plants. Oxford University Press, Oxford.
- 2. B.B. Buchanan, W. Gruissen and R.L. Jones (eds). 2000. Biochemistry and Molecular Biology of Plants. American Society of Plant Biology, Rockville, USA.
- 3. J.H. Hammond, P. Mcgarvey, and V. Yusibov (eds). 2000 Plant Biotechnology. Springer Verlag, Heidelberg.
- 4. H.K. Das (ed.) 2004. Text Book of Biotechnology. Wiley India Pvt. Ltd., New Delhi.
- 5. I. Potrykus and G.Spangenberg, 1995 Gene Transfer to plants Springer, Berlin. Heidelberg.
- 6. J. Sambrook, E.F.Fritsch and T.Maniatis 1989. Molecular Cloning A Laboratory Manual
- 7. Adrian Slater, Nigel Scott and Mark Flower, 2000 Plant Biotechnology -The Genetic Manipulation of Plants,Oxford University Press,).
- 8. J. Draper 1988. Plant Genetic Transformation and Gene Expression Blackwell Scientific Publications, Oxford.
- 9. R.W. Old, S.B. Primrose. 2004. Principles of Gene Manipulation. An Introduction to Genetic Engineering. Fifth Edition, Blackwell Science Publications.

	SCT-2.1: NUTRACEUTICALS	48 hrs
Course objectiv	es:	
• To impar and to de	t the concept of nutraceuticals and functional ingredients in foods, termine their role in health and disease prevention.	
• To learn usefulnes	n about various phytochemicals-their sources, functions and as.	
• To illust regulation	rate the importance of food safety, food quality, food laws and ns in Food industry.	
Possible outcom	les:	
Students will acc	uire basic knowledge on the physiology of human nutrition and the	
importance of Nutraceuticals/b	nutraceuticals in the context of the human well-being. ioactive compounds familiarize students with the scientific	
factors associate	d with chronic diseases and human health. The study enables the	
and well being	Istand the concept of food safety and their fole in the numan hearth	
Unit-I Nu	utraceuticals as science: Importance of nutraceuticals in human alth: basic food types, cultural diets, fast foods, street foods, junk	12hrs
fo	ods: functional foods: food pyramids: classification of nutrients and	
th	eir functions; anti-nutritional factors. Industrial fortification, forms	
of	nutrient supplementation, vitamin and mineral supplements;	
bi	ofortification, fortified crops; Golden Rice; energy drinks and	
in: nu	fant food formulae; dietary supplements, health benefits; htriceuticals on the market.	
Unit-II Pl vi	ant and animal based nutraceuticals: Antioxidants, saponins, tamins, minerals, carotenoids, amino acids, gum and resins, chitin,	12hrs
ch (S	itosan, glucosamine, chondroitin, cod liver oil; Algal nutraceuticals pirulina. Sea weeds): Bacterial nutraceuticals. Probiotics	
(y	oughurt), Prebiotics and Synbiotics; fermented foods in health care.	
Li	pid, carbohydrate and protein based nutriceuticals; dietary fibers,	
so	urce and health benefits. Recommended Daily Allowances.	
Unit-III No	atraceuticals in health and disease: In preventive and protective edicine, in cancer treatment, cholesterol and obesity control.	12hrs
Nı Gi	utraceuticals from home garden (Aloe, Honey, Turmeric, Saffron, inseng, Neem, fruits, spices, herbs, Bramhi, Tulasi, Bitter guard,	
Fe Di	nugreek, Asafoetida, Ginger, Pepper, Garlic, Onion, Betel leaves). ets in pregnancy, geriatric diets, paediatric diets; diets in diabetes	
an ha	d hypertension. Cosmeceuticals, plant based cosmeceutics in skin, ir, eye and dental care.	
Linit_IV Le	egal control of food safety and standards: National and international	17hrs
re Th	gulation of food and nutriceutical standards. The Food Safety and Standards Authority of India: Food Safety and	121118

Standards Act, 2006, Indian National Codex Committee, US Foods
and Drugs Administration, Codex Alimentarius Commission.

- 1. Bagchi, D., Lau, F.C. and Ghosh, D.K. (Eds.). 2010. Biotechnology in functional foods and nutraceuticals. CRC Press, Boca Raton, Florida, USA.
- 2. Duggan, C., Watkins, J.B. and Walker, W.A. (Eds.). 2008. Nutrition in pediatrics: basic science and clinical applications. People's Medical Publishing House, Hamilton, USA.
- 3. Government of Canada, 2013. Nutraceuticals / Functional Foods and Health Claims on Foods. Policy Paper. Hasler, C.M. (Ed.) 2005. Regulation of functional foods and nutraceuticals: A global perspective. IFT Press and Wiley-Blackwell, Ames, Iowa, USA.
- 4. Katsilambros, K. 2011. Clinical nutrition in practice. John Wiley & Sons, New York. USA.
- 5. Nestle, M. 2002. Food politics. University of California Press, Berkeley, USA.
- 6. Pathak, Y.V. (Ed.) 2010.Handbook of nutraceuticals. vol. 1: Ingredients, formulations, and applications. CRC Press, Boca Raton, Florida, USA.
- 7. Shahidi, F. and Naczk, M. (EDs.) 2003. Phenolics in food and nutraceuticals. 2nd edition. CRC Press, Boca Raton, Florida, USA.
- 8. Shahidi, F. and Weerasinghe, D.K. (Eds.) 2004. Nutraceutical beverages: Chemistry, nutrition, and health effects. American Chemical Society, Washington D.C., USA.
- 9. Shils, M.E., Olson, J.A., Shike, M. and Ross, A.C. (Eds.) 1999. Modern nutrition in health and disease. Lippincott, Williams and Wilkins, Philadelphia, USA.
- UNICEF. 2013. Improving child nutrition: The achievable imperative for global progress. Wildman, R.E.C., Wildman, R. and Wallace, T.C. 2006. Handbook of nutraceuticals and functional foods. 2 edition. CRC Press, Boca Raton, Florida, USA.
- 11. Winter, H.G. and Tucson, A.Z. 1998. Vitamins, herbs, minerals and supplements: the complete guide. Fischer Books, USA.
- 12. World Health Organization. 2007. Community based management of severe acute malnutrition. The World Food Programme, the United Nations System Standing Committee on Nutrition and the United Nations Children's Fund. Official Websites of Food Safety and Standards Authority of India and Codex Alimentarius Commission.

HCP-2.1 ECOLOGY AND ENVIRONMENTAL BIOLOGY

- 1. Analysis of water samples of lotic and lentic with reference to.
 - a. Corbon dioxide
 - b. Dissolved oxygen
 - c. Total hardness
 - d. Phosphate
 - e. Sulphate
 - f. Nitrates
- 2. Soil texture and Soil profile.
- 3. Effect of SO_2 and Cl_2 gasses on plants.
- 4. Water holding capacity of different soil samples
- 5. Determination of organic content, carbonates, exchangeable bases and oxidzable organic content of soils
- 6. Study of vegetation by quadrat and transect method
- 7. Ecological instruments-Animometer, Lux meter, Rain guaze, Max and min thermometer
- 8. Visit to meteorological station
- 9. Morphological and anatomical adaptation in hydrophytes, xerophytes (succulents and nonsucculents), epiphytes and halophytes

HCP-2.2 CELL AND MOLECULAR BIOLOGY

- 1. Study of cell division Mitosis (Allium cepa, Allium sativum, Rhoeo)
- 2. Study of Meiosis (Allium cepa, Helianthus, Tredescantia flower buds)
- 3. Karyotype analysis ideogram preparation of ideogram.
- 4. Isolation of genomic DNA from leaf tissue
- 5. Agarose Gel electrophoresis.
- 6. Separation of protein by SDS.
- 7. Isolation of RNA from plants.

HCP-2.3: GENETICS AND EVOLUTION

- 1. Study of life cycle in Drosophila melanogaster.
- 2. Observation of mutant flies.
- 3. Special type of chromosome in Drosophila melanogaster.
- 4. Genetics problem in Mendelian inheritance, gene interaction, quantitative inheritance, multiple alleles, sex linkage and genetic map.
- 5. Application of Hardy-Weinberger law in gene frequencies.
- 6. Models and photographs related to genetics.

SCP-2.1: METHODS IN PLANT SCIENCE

- 1. Fixation of plant materials, dehydration, sectioning, staining and analysis.
- 2. Demonstration of pH meter, UV-Visible spectra, Chromatography and PCR
- 3. Demonstration of serial dilution and sterilization methods
- 4. Isolation of Chloroplast by centrifugation.
- 5. Isolation of plant pigments and paper chromatography.
- 6. Estimation f chlorophyll pigments by spectrophotometer
- 7. Estimation of protein by UV-Visible spectrophotometer.
- 8. Estimation of DNA by UV-Visible spectrophotometer.

SCP-2.1: PLANT GENETIC ENGINEERING

- 1. Isolation of genomic DNA from bacteria/plants and purification by agarose gel electrophoresis.
- 2. Restriction analysis of plasmids, gel purification of DNA, small and large scale purification of plasmids.
- 3. Preparation of competent *E. coli* cells. Bacterial transformation and recovery of plasmid clones.
- 4. Gene cloning in plasmids, analysis of recombinant plasmids.
- 5. DNA amplification by PCR, RT-PCR
- 6. Analysis of DNA and RNA and Protein by Southern and Northern and Western blotting.
- 7. Demonstration: Plant tissue culture-preparation of Murashige and Skoog medium, shoot differentiation in tobacco. Transformation of *Agrobacterium* by triparental mating and by electroporation, *Agrobacterium*-mediated transformation of tobacco, detection of GUS and GFP in transgenic plants. Acclimatization of transgenic plants and maintenance in greenhouse.

SCP-2.1: NUTRACEUTICALS

- 1. Extraction and estimation of total sugars from food products (dairy product, fruit juices, bread).
- 2. Estimation of crude fat contents of foods by Soxhlet's method (Butter, Margarine, edible oil).
- 3. Estimation of total Nitrogen of foods by Kjeldahl and Micro Kjeldahl methods.
- 4. To study nutritional composition (Proteins, carbohydrates, lipids, vitamin C and presence of secondary metabolites) of the following: Bee honey, Mushrooms, dairy products, Beans, Spinach, Carrot, Apple, Amla, Pineapple, Papaya, Lentil and Soya.
- 5. Extraction and estimation of oil or crude fat content in oil seeds.
- 6. Estimation of total phenols and chlorogenic acid (Phenolic compound) in plant material.
- 7. Qualitative test for tannins, phenolics and alkaloids using TLC.
- 8. Extraction and quantification of alkaloids.

SEMESTER III		
Н	CT-3.1 SYSTEMATIC BOTANY OF ANGIOSPERMS	48 hrs
Course objec	ctives:	
• To ac	quire the fundamental knowledge of plant systematics.	
• To kn	now about the basic concepts and principles of plant systematics. To	
know	how to identify the plants.	
• To cr	eate awareness of the f taxonomic relationships in plant systematic	
studie	S.	
Dessible out	nomos:	
The course w	vill nurture the knowledge on classification of plants. The course will	
give an exper	tise in understanding characteristic features of various plant families	
give an exper	Introduction and History of Plant Taxonomy Botanical Survey of	
Unit-I	India a brief account International Code of Rotanical Nomanalatura	8hrs
	(ICDN/ICN), solicent features, important rules and recommendations	
	(ICBIN/ICN), salient reatures, important rules and recommendations.	
	Binomial nomenciature, Bolanical gardens of world and India.	
	Maintenance and importance of neroaria.	
Unit-II	The species concept, Taxonomic hierarchy, species, genus, family	4hrs
	and other categories. Material basis of systematics; correlation,	
	weighting, variations of characters and isolation	
Unit-III	Systems of classification:	6hrs
	1. Artificial-Linneaus	
	2. Natural- Bentham and Hooker	
	3. Phylogenetic systems	
	a. Transitional- Engler and Prantl	
	b. Intentional-Charles Bessay and Hutchinson	
	c. Modern phylogenetic-Takhatajan, Cornquist	
	A brief note on APG III system of classification	
Unit-IV	Taxonamy in relation to Anatomy, Embryology, Palynology,	6hrs
	Cytology, Phytochemistry and Serology. A brief account of	
	Numerical taxonomy.	
Unit-V	Study of diagnostic, variability and systematic position of the	20 hrs
	following:-	
	Dicotyledons:	
	Magnoliaceae, Nymphaeaceace, Papaveraceae, Urticacecae,	
	Menispermaceae, Casuarinaceae, Nyctaginaceae, Malvaceae,	
	Passifloraceae, Euphorbiaceae, Amaranthaceae, Droseraceae,	
	Podostemaceae, Loranthaceae, Fabaceae, Caesalpiniaceae,	
	Mimosaceae, Meliaceae, Sapindaceae, Linaceae, Scrophulariaceae,	
	Bignoniaceae, Acanthaceae, Lamiaceae, Rubiaceae, Asteraceae,	
	Chenopodiaceae, Apocynaceae, Zygophyllaceae, Polygonaceae;	
Unit_VI	Monocotyledons-	Ahra
	Alismataceae, Araceae, Cyperaceae, Poaceae, Commelinaceae,	H 111'S

Zingiberaceae, Liliaceae, Dioscoreaceae, and Orchidaceae.

- 1. Airy-show, H.K. 1983. Eighth edition. A dictionary of flowering plants and ferns, Cambridge Uni. Press.
- 2. Bennet, S.S.R. 1979. An introduction to plant nomenclature, International Book Distributors, Dehradun.
- 3. Cronquist, A. 1968. The evolution and classification of flowering plants, Thomas Nelson and Sons Ltd. London.
- 4. Jeffery, C. 1982. Sec. Edn. An introduction to plant taxonomy, Cambridge Uni. Press.
- 5. Jhori, B.M. and Bhatnagar, S.P. 1994. Taxonomy of Angiosperms. Narosa Publishers, New Delhi.
- 6. Jones, S.B. and Luchsinger, A.E. 1979. Plant systematics McGraw Hill Book Co. N.Y.
- 7. Lawrence, G.H.M. 1951. Taxonomy of vascular plants. Mac Millan, London.
- 8. Naik, N. 1984. Taxonomy of angiosperm., Tata McGraw Hill, New Delhi,
- 9. Pullaih ,T. 1998. Taxanomy of angiosperms, Regenecy publication, New Delhi.
- 10. Mondal A. K. Advanced Plant Taxanomy (2005) New Central Book Agency (P.) Ltd.
- 11. Radford, A. E., Dickinson, Massey, J. R. and Bell, c. R. 1974. Vascular plants systematic-Harper and Row, N. Y.
- 12. Sachdev, S. K. 1986. Experimantal plant taxanomy, Kalyani publishers, New Delhi.
- 13. Sivarajan, V. V. 1984. Introduction to principles of plant Taxanomy, Kalyani publishers, New Delhi.

HCP-3.2: BOTANICAL TOUR AND HERBARIUM PREPARATION

Course objectives:

- To conduct field trip outside the campus area/ District, a minimum of 3 to 4 days to understand floristic diversity of Angiosperms and to collect specimens from various agroclimatic conditions for the preparation of the Herbarium.
- Compilation of field notes and preparation of herbarium sheets of the plants at least 20 abundant wild or cultivated plants.

Possible outcomes:

The course will give an expertise in understanding characteristic features of various plant families. Students will be able to give description of various species of a genus; location of key characters and preparation of keys at generic level. The species recorded from the field should be submitted as herbarium specimens.

Contents: Botanical tour, plant collection, identification and documentation, methods of collecting plants, herbarium specimens, herbarium preparations and submission.

НСТ-	3.3 REPRODUCTIVE BIOLOGY AND PLANT ANATOMY	48 hrs
Course obje	ectives:	
• To st	tudy the plant anatomy which facilitate the process of understanding the	
inter	nal structures of various plant parts and their significance.	
• To s	tudy the development of male and female gametes, pollination and	
fertil	ization reveals the various steps involved in development of new plant.	
Possible out	comes:	
The course	will illustrate anatomy of various plant parts. The course will make the	
learners und	lerstanding about various stages of development. The student will be	
able to know	w details about various tissue system in plants. The students will also	
understand	the scope and importance of anatomy and embryology in plants. In	
addition the	ev will clearly understand the seed-to-seed developmental aspects of	
angiosperms		
ungiosperint		
Unit-I	Embryology: Introduction, History and scope of Embryology	2hrs
Unit-II	Microsporogenesis: Development, types and functions of tapetum.	10hrs
	Role of tapetum in pollen development, sporopollinin, pollen allergy.	101115
	Male gametophyte: Development of pollen tube, pollen mitosis,	
	vegetative and generative cells and heterospory.	
	Megasporogenesis: Megaspore, diad, tetrad and coenomegaspore.	
	General account of mono, bi and tetrasporic embryo sac development	
	(No type studies of tetrasporic embryo sac).	
	Female gametophyte: Organization of mature Embryo sac, Ultra	
	structure of Egg apparatus, Nutrition of Embryo sac.	
Unit_III	Pollination: Brief account of Structure, Histochemical details of Style	6hrs
01111-111	and Stigma, Pollen germination, Pollen embryo sac. Self-	UIII S
	incompatibility.	
	Fertilization: Path of entry of Pollen tube, Site of pollen discharge.	
	Double fertilization.	
Unit_IV	Endosperm: Types of Endosperm development, Endosperm haustoria	6hrs
	and function.	UIII S
	Embryogenesis: Monocot and dicot embryo development.	
	Apomixis: A general account, causes, significance and genetics of	
	apomixes and Polyembryony.	
Unit_V	Introduction and History, Primary and Secondary cell walls, Ultra	10hrc
	Structure and Chemistry of cell wall.	101115
	Theories of organization of root and shoot apical meristems.	
	Cambium: General account.	
	Xylem: Ontogeny, Phylogeny, Evolution, ultra-Structure and	
	function.	
	Phloom: Ontogony phylogony Evolution Ultre structure of signa	

	tube elements and functions.	
Unit-VI	Primary and secondary growth: Anamolous primary structures with special reference to <i>Nyctanthus</i> , <i>Achyranthus</i> . Anamolus secondary growth with reference to <i>Boerrhavia</i> , <i>Bignonia</i> , <i>Leptadinia</i> , <i>Piper</i> , <i>Tinospora</i> , <i>Thunbergia</i> , <i>Coccinea</i> .	8hrs
Unit-VII	Wood anatomy, Softwood, Hard wood, Ring and Diffuse porous wood, Xylem parenchyma, Ray parenchyma.	4hrs
Unit-VII	Epidermal tissue system: Types of stomata, trichomes and glands.	2hrs

- 1. Clegg, CJ and Cox G. (1974) Anatomy and Activities of Plants- A guide to the study of flowering plants.
- 2. Cutler, D. F. (1978) Applied Plant Anatomy, Longman, New York.
- 3. Cutler E. Plant Anatomy: Experiments and interpretation. Part-1. Cell and Tissues Edword, Arnold, London (1969).
- 4. Cutter E. Plant Anatomy: Experiments and interpretation. Part-2. Organs. Edward, Arnold, London (1971).
- 5. Eames E. J. and McDaniel's (1947). An introduction to plant anatomy, Mc Grew Hill, New York and London.
- 6. Esau, K. (1960) Anatomy of seed plants. John Wiley and Sons.
- 7. Esau, K. (1965) Plant Anatomy, 2nd Edition.
- 8. Esau, K. (1965). Vascular differentiation. Hort, Rinehert and Winston, New York.
- 9. Fahn, A. (1974) Plant Anatomy, 2nd Edition, Pregmon.
- 10. Krishnamurthy. K. V. methods in Plant Histo-Chemsitry. Vishwanathan, S. Madras, 1988.
- 11. Roy, K. (2006) Plant Anatomy, New Central Book Agency (P) Limited. Calcutta.
- 12. Maheshwari P. (1950). An introduction to embryology of Angiosperms. McGrew Hill, New York.
- 13. Bhojwani S. S. and Bhatnagar S. P. (2000). The embryology of Angiosperm (4th revised and enlarged edition) Vikas Publishing house, New Delhi.
- 14. Raghavan V. (1997). Molecular embryology of flowering plants. Cambridge University press, Cambridge.
- 15. Raghavan V. (1986). Embryogenesis in angiosperm- A development and experimental studies. Cambridge University Press New York USA.
- 16. Raghvan V. (1987). Molecular Biology of flowering plants Cambridge University Press New York USA.
- 17. Shivanna K. R. and Sawhney V. K. (eds) 1997. Pollen Biotechnology for crop production and improvement. Cambridge University, Cambridge.

	SCT-3.1 ECONOMIC BOTANY	48 hrs
Course obj	ectives:	
• The	course is also designed to provide the knowledge about economic	
impo	province of various plants.	
• To l	earn the diverse human uses of plants and plant products	
• To	acquire an increased awareness and appreciation of plants and plant	
• 10	ucts encountered in everyday life	
prod	dets chebuntered in everyddy nie.	
Possible ou	tcomes:	
The study	will develop a basic knowledge of taxonomic diversity and important	
families of u	iseful plants and Increase the awareness and appreciation of plants & plant	
products en	countered in everyday life. Students will be able to appreciate the diversity	
of plants and	d the plant products in human use.	
Unit-I	Introduction: Plants in commerce and industry. General account:	2hrs
	History, methods of cultivation and uses of economic crops.	
Unit-II	Study and utility of the useful parts of the following: Cereals and	12hrs
	Millets- Rice, Wheat, Maize, Barley, Sorghum and Millets. Pulses: Red	
	gram, Green gram, Black gram, Horse gram, Pea, Cow pea, Bengal	
	gram. Oil Yielding plants: Sunflower, Safflower, Groundnut, Linseed,	
	Rape seed. A brief introduction to horticultural plants. Floriculture.	
Unit-III	Study and utility of the useful parts of the following: Sugar yielding	10hrs
	plants- Sugar cane and Sweet potato. Spices and condiments- Ginger,	
	Turmeric, Cardamom, Cinnamon, Clove, Saffron, All spice, Black	
	pepper, Nutmeg, Red pepper, Coriander, Cumin, Fennel and Vanilla,	
T T •4 T T 7	Study and utility of the useful parts of the following: Fibre- Cotton, Jute,	101
Unit-IV	Flax, Hemp, Sann hemp, China grass, Coconut and Kapok. Timber	12hrs
	vielding plants- Tectona, Dalbergia and Rosewood, Dyes- Indigo,	
	Henna: Masticatories and fumitories: Areca nut. Beetle leaf. Tobacco.	
	Rubber- Para rubber and other substitutes Gums- Gum Arabic. Karva	
	gum	
T T •4 T 7	Medicinal Botany: Scope and Importance of Medicinal Plants.	101
Unit-V	Indigenous Medicinal Sciences. Ethnomedicinal plant Gardens	12hrs
	Important medicinal plants and their uses. Palaeoethnobotany. Folk	
	medicines of ethnobotany, ethnomedicine ethnoecology ethnic	
	communities of India Application of natural products to certain	
	diseases- Jaundice cardiac infertility diabetics Blood pressure and skin	
	diseases	
	415445451	

- 1. Hill, A.F. 1952. Economic Botany, TataMcGraw Hill
- 2. Kocchar, S.L. 1998. Economic Botany of Tropics.
- 3. Kochar, L.S. 1981. Economic Botany in the Tropics, Macmillan
- 4. Pandey, B.P. 2000. Economic Botany. S. Chand & Company, New Delhi.

- 5. Pandey, S.N. and Chandha, A. 1999. Economic Botany. Vikas Publishing House Pvt. Ltd. New Delhi.
- 6. Peter B. Kaufman et al., 1999. Natural Products from Plants
- 7. Purseglove, J.W. 1972. Tropical Crops-Monocotyledons and Dicotyledons.

SC	T-3.1 MEDICINAL PLANTS AND PHYTOCHEMISTRY	<u>48 hrs</u>
Course obj	ectives:	
• To st	tudy the concept of Ethanobotany and Ethanomedicine.	
• To io	lentify the most important medicinal plants.	
• To p	rovide the basic information on pharmacognosy including: taxonomy of	
the c	rude drugs, their cultivation and medicinal importance.	
• To c	lescribe the basic methods of extracting the active components from	
plant	s and how to identify them.	
• State	the phytochemical classification and memorize the main categories of	
activ	e components, contained in medicinal plants.	
Possible out	tcomes:	
Learner wil	definite witness the role of plants in survival of human beings and	
other organi	sm. They will also well verse with contribution made by our primitive	
people in a	exploration of plant knowledge to alleviate common diseases and	
developmen	t of system of medicine. Students will be able to Identify the biological	
source, mor	phology, cultivation, collection, drying, packing, storage, medical as	
well as non-	medical uses of plants and plant secretions. Students will also be able to	
identify the	different chemical constituents present in plants their biosynthetic	
origin, chara	cterization, natural occurrence and pharmacological action.	
Jin:4 I	Ethnobotany and Ethnomedicine: A brief account at world level and	10hma
UIIIt-I	in India. A brief account on therapeutic values of important plant	101115
	drugs of different taxonomic groups. Classification of medicinal	
	plants.	
Unit-II	Pharmacognosy: Raw drug analysis, microscopic, macroscopic,	10hrs
	Characteristics, preliminary chemical analysis, qualitative and	
	quantitative analysis of raw drug using Colorimetry,	
	Spectophotometry, Chromatography (Senna, Datura, Cinchona,	
	Ginger, Nuxvomica, Withania, Rauwolfia, Emblica)	
Unit-III	Cultivation of medicinal and aromatic plants: Cultivation practice,	12hrs
~	disease and pest control, harvesting and storage of medicinal plants,	
	post-harvest care, deterioration and disintegration of active	
	compounds during storage and its control. (Dioscorea, Isabgol,	
	Senna, Liquiorice, Rauwolfia, Costus, Withania, Citronella, Vetiver,	
	Artimisia, Acorus, Vanilla)	
Unit-IV	Phytochemistry - Occurrence, classification and properties of	8hrs
Umt-1 \$	Alkaloids, Steroids, Terpenoids, Lectins, Non Protein Amino acids.	0113
	Pesticidal, and Insecticidal properties of compounds of plant origin	
Unit-V	Medicinal oil: occurrence, distribution and importance of aromatic	4hrc
	and non-aromatic oils of plant source. Use of vegetable oil as food,	5 1117
	medicine and industry.	
IInit-VI	Plants in the treatment of Stress, Heart diseases, Cancer, AIDS, anti-	4hrc
	fertility anti-microbial activity	-+111'S

- 1. Kirtikar K. R. and Basu B. D. 1932 Indian Medicinal plants.
- 2. Nadakarni, A. K. 1954 Indian Materia MedicaVol I and II
- 3. Sivarajan V. V. and Indira, B. 1994 Ayurvedic drugs and their plant sources. Oxford &IBH Publishing Co, New Delhi.
- 4. Trease, G. E. and Evans, W. L. 1983 Pharmacognosy 12th ed. Bailliere Tindall, London.
- 5. Vaidya, B. 1982. Some controversial drugs in Indain medicine. Chaukambica Orientalia, Varanasi.
- 6. Harborne, J. 1984 Phytochemical methods. Ed Chapman & Hall, London
- 7. Mann, J., Davidson, R. S., Hobbs, J. B., Benthorpe, D. V. and Harborne Natural products, Longman Scientific and Technical Co, Essex
- 8. Smith, P. M. 1976 The Chemotaxonomy of plants Edward Arnold, London.
- Rastogi, R.P. and Mehrotra, B.N. 1991. Compedium of Indian medicinal plants Vol.I&II. Publishers. Central Drug Research Institute Lucknow and Publications and Information Directorate New Delhi
- Vijay adnhaleshi C 2004 Compendium on Controversial Drugs, Jagdguru Sriman Madhwacharya Moolamahasamsthana Sri Raghavendraswamy Matha, Manthralayam.

	SCT-3.1 BIODIVERSITY AND CONSERVATION	48 hrs
Course obje	ctives:	
• This	paper is meant for students to gain in-depth knowledge of different levels,	
threat	ts and distribution of Biodiversity and focus on the different approaches	
for bi	odiversity conservation.	
• To er	nphasize the importance of conserving rare plants and animals.	
Possible out	comes:	
The student	will be able to appreciate the value of biodiversity. They will also develop	
the skills ne	cessary to work efficiently in areas of in-situ and ex-situ conservation.	
Students will	know the position of India in conserving rare plants and animals.	
Unit-I	Species concept: Concept and importance of biodiversity, Earth summit	10hrs
Unit-1	1992, and agenda 21, species diversity, genetic diversity, ecosystem	101115
	diversity, Biodiversity of the world, India and Karnataka, Hotspots of	
	world and India, Mega biodiversity centres of world and India. Origin	
	centers of crop plants.	
Unit-II	Loss of Biodiversity: Casual factors of threat, Impact of habitat loss and	10hrs
	habitat fragmentation, Categories of treat endangered, vulnerable, rare,	
	threatened and extinct. Red Data Book. Environmental impact	
	assessment, sustainable development.	
Unit-III	Biodiversity Conservation: Objectives, implication and action plans,	10hrs
	International and National organizations for conservation of natural	
	resources. In situ conservation – protected areas, biosphere reserves,	
	hotonical gardens, gene banks, medicinal conservation parks, herbal	
	gardens	
	International organizations for biodiversity conservation- IUCN Species	4.0-
Unit-IV	survival commission (SSC) convention on biological diversity (CBD)	10hrs
	CITES, TRAFFIC, WWF. Plant genetic resources: Conservation, gene	
	bank- methods, types, NBPGR, IPGR.	
Unit-V	Biodiversity conservation Legal aspects: Legal aspects of biodiversity in	8hrs
	India. Policy and priority setting. Biodiversity conservation future	Unib
	strategies for India.	

- 1. Ramakrishna, P.S. 1991. Ecology of Biological innovation in the Tropics. National Trust of Ecology and International science Publication, New Delhi.
- 2. Ramakrishna, P.S., Das, A.K. and K.G. Saxena. 1996. Conserving Biodiversity for Sustainble Development. INSA, New Delhi.
- 3. Hambler, C. 2004. Conservation. Cambridge University Press.
- 4. Southwood, T.R.E. and Henderson. 2000. Ecological methods. Blackwell Science Ltd., Oxford.
- 5. Pandey, A.K. (ed.) 1995. Taxonomy and Biodiversity. CBS, New Delhi.

- 6. Khoshoo, T.N. 1994. India's Biodiversity Tasks a need. Curr. Sci., 67: 577-582.
- Myers, N. 1990. Threatened Bio and as 'hot spots' in tropical forests. The Environmentalists, 8: 187-2008.
- 8. Richard B. Primack. 1993. Essentials of Conservation Biology.
- 9. Heywood, V.H. & Watson, R.T. 1995. Global Biodiversity Assessment.
- 10. Negi, S.S. 1993. Biodiversity and its Conservation in India.
- 11. Glasson, J., Therivel, R. & Chadwick, A. 1995. Introduction to environment impact assessment. UCL Press Ltd., London.
- 12. Heywood, V.H. & Wyse Jackson, R.S. (eds.), 1991. Tropical Botanical Gardens- their role in conservation and development. Academic Press, San Diego.
- Nayar, M.P. 1996. Hot spots of endemic plants of India, Nepal, and Bhutan. TBGRI, Trivandrum. 12. Nayar, M.P. & Sastry, A.R.K. 1987, 1989, 1990. - Red Data Book of Indian Plants (3 vols.).
- 14. Walter, K.S. & Gillett, H.J. 1998. IUCN Red List of threatened plants. The World Conservation Union, Cambridge.

HCP-3.1 SYSTEMATIC BOTANY OF ANGIOSPERMS.

- 1. Description of plants using technical terms
- 2. Identification of plants to species using flora
- 3. Preparation of dichotomous key for identification.

HCP-3.3 REPRODUCTIVE BIOLOGY AND PLANT ANATOMY

- 1. Endosperm/ Embryo dissection
- 2. Observation of slides of microsporogenesis and megasporogenesis.
- 3. Pollen germination and viability
- 4. Preparation of permanent slides of free hand /paraffin Sections
- 5. Wood anatomy study based on T.S., T.L.S. and R.L.S.
- 6. Dermal tissue system.

SCP-3.1: ECONOMIC BOTANY

- 1. Field survey for collection of economically important plants of the region.
- 2. Study of locally available economic products of plant origin.
- 3. Study of important medicinal plants and their uses.

SCP-3.1: MEDICINAL PLANTS AND PHYTOCHEMISTRY

- 1. Identification of medicinal plants.
- 2. Identification of raw drugs- pharmacognistic studies.
- 3. Identification of controversial drugs.
- 4. Preliminary tests for the occurrence of secondary metabolites.
- 5. Estimation of alkaloids
- 6. Estimation of Phenols
- 7. Estimation of Essentail oils.

SCP-3.1: BIODIVERSITY AND CONSERVATION

- 1. Field survey of important plants of the region.
- 2. Study of the characters and threatened plants included in the theory.
- 3. Survey of important timber yielding trees of the region.
- 4. Determination of the minimum size of the quadrat suitable for an area using 'species area curve' method.
- 5. Determination of Importance Value Index (IVI) of the plant species in the community by quadrant method.
- 6. Study of Phytogeographic maps of world and India.
- 7. Map of hot spots, Continental drift.

	OE-3.1 PLANT PROPAGATION TECHNIQUES	48hrs
Course obje	ectives:	
• To in and t in the	ntroduce the botanical concepts that underlie the propagation of plants to acquaint the students with the methods and technologies that are used e propagation industry.	
• To m and c and t	hake students think critically about plant propagation to solve problems communicate and explain the scientific basis for the different techniques their individual use and application.	
Possible out The course v plants by see (tissue cultu and sexual manipulate t plants.	tromes: will make the learners knowing about various techniques of propagating eds, rooting cuttings, grafting, budding, layering, and micropropagation re). Students will be able to select the appropriate methods of asexual propagation based upon biological characteristics of the crops and the propagation environment to promote the successful propagation of	
Unit-I	Plant propagation- History, scope and importance. Propagation structures with reference to greenhouse equipment and media.	3hrs
Unit-II	Seed propagation; Germination, type of seed dormancy and breaking, techniques of seed production and handling principles.	6hrs
Unit-III	 Vegetative propagation: Techniques of propagation a) Cuttings: Stem cuttings – hard wood, semi hard wood, soft wood and herbaceous, leaf cuttings, leaf bud cuttings, root cuttings. b) Layering: Simple layering, compound, tip layering, stool, air, serpentine and trench layering. c) Budding: T – budding patch budding, chip budding, ring budding. d) Grafting: Whip and tongue, wedge and cleft, bark, side grafting, approach. e) Propagation by specialized stems and roots 	12hrs
Unit-IV	Micropropagation – Techniques and applications in forestry and horticulture.	5hrs
Unit-V	Advantage, limitations and applications of vegetative propagation, clones, genetic variation in asexually propagated plants, different methods.	5hrs
Unit-VI	Seed propagation: Seed production, types of seed sowing, harvesting, drying and thrashing, storage, types of storage, pathogens in storage and their control, seed health, purity, vigor, and tests to check. Dormancy types, factors affecting dormancy, methods to overcome dormancy, advantages of dormancy. Seed germination and viability tests seed protectants; priming. Coating, pelleting, Classes of seeds; breeder seeds, nuclear seeds, founder seeds, certified seeds and cultivar seeds, seed act 1966, seed certification. Liner production and	12hrs

	hardening of seedlings, seed certification, seed act	
Unit-VII	Propagation methods of some selected plants – Citrus, Grape, Mango,	5hrs
	Mulberry, Hibiscus, Rose, Croton, and Eucalyptus.	oms

- 1. Abbottt, A.J. and Atkin, R.K. 9eds.) 1987 Improving vegetatively propagated crops. Academic press, New York.
- 2. Bose, T.K., Sadhu, M.K., & Das, P., 1986. Propagation of Tropical and Subtropical Horticultural crops, NowyaPrakash, Calcutta.
- 3. Hartmann and Kester, 1983. Plant propagation.
- 4. Hartmann, H.T., Kester E.D., Davis, F.T., and Geneve, R.L. 1997. Plant propagation. Principles and practices. Prentice Hall of India Private Limited, New Delhi.
- 5. Krishnamurthy. H.M. 1981. Plant Growth substances including application in Agriculture.
- 6. L.M. Pierik 1987. In vitro culture of Higher plants MurtinusNijhoff pub. Dordrecht.
- 7. M.K. Razdan 1994. An Introduction to Plant tissue culture, Oxford and IBH Pub. Co., PVT. Ltd., Bombay and Calcutta.
- 8. Mac Donald, B. 1987. Practical woody plant propagation for nursery growers. Portland, OR: Timber press.
- 9. Sadhu, M.K. 1989. Plant propagation Wiley eastern Ltd. N. Delhi.
- 10. Hartman, H.J. 1990. Plant Propagation: Principles and practices. Prentice Hall, New Delhi.
- 11. Sadhu, M.K. 2000. Plant Propagation. New Age Publication, New Delhi.
- 12. Schwalz, M. 1975. Guide to commercial hydroponics. Israel University, Jerusalem.
- 13. Sharma, V.K. 1996. Plant nurseries. Techniques, production and management. Indian Pub. New Delhi.

	OE-3.1 PLANT DIVERSITY AND HUMAN WELFARE	48hrs
Course obje	ectives:	
• To e	nlighten the students on the sources and role of plants in meeting the	
basic	demands of the human.	
• To re	eveal the range of products and their novel usage in human life.	
Possible out	comes.	
Students wil	l understand the inseparable interaction between human and plants and	
the related	ecology as a whole. This will create a respect for plants among the	
community.	conseg as a whole this will create a respect for plants allong ale	
TT T T	Plant diversity and its scope- Genetic diversity. Species diversity.	1.01
Unit-1	Plant diversity at the ecosystem level, Agrobiodivesity and cultivated	12hrs
	plant taxa, wild taxa. Values and uses of Biodiversity: Ethical and	
	aesthetic values, Precautionary principle, Methodologies for	
	valuation, Uses of plants, Uses of microbes.	
Unit II	Loss of Biodiversity: Loss of genetic diversity, Loss of species	1/hrs
01111-11	diversity, Loss of ecosystem diversity, Loss of agrobiodiversity,	141115
	Projected scenario for biodiversity loss, Management of Plant	
	Biodiversity: Organizations associated with biodiversity	
	management-Methodology for execution-IUCN, UNEP, UNESCO,	
	WWF, NBPGR; Biodiversity legislation and conservations,	
	Biodiversity information management and communication	
Unit-III	Conservation of Biodiversity: Conservation of genetic diversity,	10hrs
0	species diversity and ecosystem diversity, In situ and ex situ	
	conservation, Social approaches to conservation, Biodiversity	
	awareness programmes, Sustainable development.	
Unit-IV	Role of plants in relation to Human Welfare; a) Importance of	12hrs
	forestry their utilization and commercial aspects b) Avenue trees, c)	
	Ornamental plants of India. d) Alcoholic beverages through ages.	
	Fruits and nuts: Fruit crops of Karnataka and their commercial	
	importance. Wood and its uses.	

1. Krishnamurthy, K.V. (2004). An advanced text book of biodiversity - Principles and Practices. Oxford and IBH Publications Co. Pvt. Ltd. New Delhi.

SEMESTER IV		
	HCT-4.1 PLANT PHYSIOLOGY	48 hrs
Course objet • The of water and p • Expla stress Possible out The students	ctives: course would deal with the study of plant physiology especially the r transport, absorption, mineral nutrition, photosynthesis, respiration hytohormones. ains physiological responses produced by plants against environmental ses. comes: will be able to understand how plants acquire and use the energy and	
material reso phenomena energy to ma regulators. S different stre	urces required to complete their life cycle. Students will understand the of carbohydrate synthesis in plants and use of the carbon to generate aintain plant functions; and control of plant functions through growth Students will understand the physiological changes occurred during ss conditions such as water deficit, salinity and heat stresses.	
Unit-I	Water relations: solutions, colloids, molarity, buffer molar solutions, pH, emulsion and gels. Permeability, theories of cell permeability and biosignaling, diffusion, osmosis, membranes, osmotic pressure, turgor pressure, wall pressure, relation between OP, DPD and TP, concept of water potential, plasmolysis, significance of osmosis and imbibitions.	5hrs
Unit-II	Active and passive water absorption, mechanism of ascent of sap: root pressure theory and mechanism of cohesion tension theory, water potential gradient Transpiration: types, mechanism, theories of opening and closing of stomata, factors affecting rate of transpiration, anti-transpirants and guttation	5hrs
Unit-III	Mineral nutrition: macro and micronutrients and their role and deficiency symptoms, absorption of mineral salts, nature of membranes general mechanism of solute absorption	4hrs
Unit-IV	Photosynthesis: structure of chloroplast and photosynthetic pigments, action spectrum, concept of two photosystems, red drop and Emerson enhancement effect, photophosphorylation, Calvin cycle, C ₄ and CAM pathways, photorespiration and factors affecting on photosynthesis	8hrs
Unit-V	Respiration: aerobic, anaerobic and fermentation glycolysis, Krebs cycle, electron transport system, redox potential, oxidative phosphorylation, pentose phosphate pathway. Respiratory quotient (RQ) and factors affecting on respiration	6hrs
Unit-VI	Nitrogen fixation, importance of nitrate reductase its regulation and ammonium assimilation. Proteins- structure and synthesis, lipid metabolism.	4hrs

Unit-VII	Enzymes- classification, properties and nomenclature (IUBMB), co	6hrs
	factors, co-enzymes, isozymes, mechanism of enzyme action, enzyme	01115
	inhibition enzyme kinetics.	
Unit-VIII	Growth: photomorphogenesis, photoperiodism, phytochrome,	10hrs
	vernalization and concept of biological clock. Seed dormancy- causes	10115
	and methods of breaking dormancy. Stress physiology- concept and	
	plant responses to water, salt and temperature stresses, physiological	
	action of Auxins, Gibberellins, Cytokinins, ABA, ethylene and	
	growth inhibitors.	

- 1. Bidwell.R.G.S, 1974. Plant physiology. Macmillan pub, Co, New York.
- 2. Bob B. Buchanan, Wilhelm Gruissem and Russell L. Jones. 2000. Biochemistry & Molecular Biology of Plants. ASPP publication
- 3. David L. Nelson and Michael M.CoxLehninger Principles of Biochemistry: Fifth edition) 2009. W. H. Freeman publication.
- 4. Devlin, R.M. 1996. Plant physiology, PWS publisher, Boston.
- 5. Frank B Salisbury, Cleon W Ross (1992). Plant Physiology (IV Edn). Wadsworth Publishing
- 6. Gardner, F.G., R.B. Pearce and R.L. Mitchell. 1985. Physiology of crop plants. Scientific publishers, Jodhpur.
- 7. Khan, A.A. 1977. Physiology and Biochemistry of Seed dormancy and germination, Oxford & IBH Publishing Company (P) Ltd, New Delhi.
- 8. Kozlowshki, T. 1968. Water deficit and plant growth. Vol. II., Academic Press. New York.
- 9. Leopold, A.C, 1994. Plant growth and development, McGraw Hill, New York.
- 10. Levitt, J. 1969. Introduction to Plant physiology, Morsby International Ed., London.
- 11. Lincoln Taiz and Eduardo Zeiger, 2005. Plant Physiology. Sinauver Associates Inc. Publishers, Sunderland, Massachusetts.
- 12. Lincoln Taiz, Eduardo Zeiger (2002). Plant physiology (II Edn). Sinaeur Associates, Inc. Publishers.
- 13. Panda, S.K, 2005. Advances in Strees Physiology of plants, Scientific publishers India, Jodhpur.
- 14. Price, C.A. 1970. Molecular approaches to Plant Physiology, McGraw Hill, Book Company, London.
- 15. Salisbury, F.B and Cleon Ross, 2007. Plant physiology, Wadsworth publishing company, Belimont.
- 16. Slatyer, T.O. 1961. Plant water relationship, Academic press, New York.
- 17. Street H.E. and W. Cookborn. 1972. Plant metabolism, E.I.B.S. Ed., Pergamon press, New York.
- 18. Suteelife, J.F. 1968. Plant and Water, E.I.B.S. Ed., Pergamon press, London.
- 19. Taiz, L. and Zeiger, E., Sinauer Plant Physiology. (2nd edition), Associates, Inc., Publishers, Massachusetts, USA.

HCPW-4.2: PROJECT WORK

Course objectives:

- The objective of this advanced course is to provide students with a hands on training in specialized area of plant sciences.
- To enable the student to develop deeper knowledge, understanding, capabilities and attitude in the context of research.
- To know about selection of research topic.
- To enable the student towards collection and compilation of literature.

Possible outcomes:

Students will be able to designing the experiment with clear objectivity and demonstrate the ability to collate and critically assess/interpret data. Students will acquire knowledge on techniques and tools of research, quantitative and qualitative data analysis and interpretation of data in the perspective of existing knowledge. Students will be able to effectively communicate knowledge in a scientific manner and provide recommendations based on research findings.

Contents: The student will be reading and analysing the published information in the chosen area of plant science under direct mentoring of a faculty member and will participate in research activity.

	SCT-4.1 PLANT BREEDING	48 hrs
Course obje	ectives:	
• To r	ealize the significance of plant breeding techniques in improving the	
plant	productivity and strain improvement.	
• To (describe sources and types of genetic variation and explain their	
impo	ortance for plant improvement.	
• To e	nlighten students on practical problems of plant breeding and the ways	
and 1	neans of solving the problems.	
Possible out	comes:	
The course	will give a scientific approach to plant breeding techniques and their	
significance	s. Students will acquire basic knowledge of conventional and non-	
conventiona	l methods of plant breeding. By knowing the elementary principles in	
plant breedi	ng students will understand the importance and value of producing	
disease and	insect resistant plants. They will also be familiar with methods used to	
change the t	raits of a plant to create the desired genotype/phenotype.	
 TI:4 T	Introduction: Objectives of plant breeding, important achievements	1 have
Unit-1	and future prospects, Genetic variability and its role in plant	4 nrs
	breeding, Domestication and centres of origin of cultivated plants.	
Unit II	Systems of reproduction in plants: Reproductive system; sexual and	10 hrs
01111-11	asexual	10 1115
	Pollination; cross and Self-pollination control mechanism,	
	Incompatibility, male sterility and their types, Apomixsis	
Unit-III	Hybridization: Methods of hybridization and its role.Inter-varietal,	8 hrs
01110-111	inter specific and inter generic crosses. Heterosis and inbreeding	0 11 5
	depression.	
Unit-IV	Breeding for resistance: abiotic stresses (drought and salinity), biotic	10hrs
	stresses (disease and insects).	
Unit-V	Mutation breeding: Mutations (Spontaneous and induced), Chemical	8 hrs
	and physical mutagens. Methods of mutation breeding, Limitations	U III 5
	and achievements of mutation breeding.	
Unit-VI	Molecular breeding : Molecular marker system, RFLP, RAPD,	8 hrs
	AFLP, SSR and SNPs.Methods and importance of marker assisted	0 111 0
	breeding	

- 1. Al Chaudhari, H.K. (1984). Elementary principles of plant breeding Oxford IBH..New Delhi lards R W (1995). Principles of Plant Breeding. John Wiley and Sons, Inc.
- 2. Allard, R.W, 1960. Principles of plant breeding. John Willeg, New York.
- 3. Chaudhary, H. K. (2001) Plant Breeding Theory and Practice, Oxford IBH Ltd, New Delhi, India
- 4. David Allen Sleper, John Milton. (2006). Breedign Field Crops. Blackwell Publishing Ltd.

- 5. Dwivedi and Singh (1980) Essentials of Plant Techniques, 2nd Ed., Scientific Publishers. Moan Bhavan Udaipur, India.
- 6. Gardner, E.J. (1972). Principles of genetics. Willey Eastern Pvt.Ltd.
- 7. Ghahal G S and Gosal S S (2002). Principles and procedures of Plant Breeding. Narosa Publishing House.
- 8. Gupata P. K. (2007) Genetics, Plant Breeding and Evolution. Rastogi Publication, Meerut, India
- 9. Gupta P. K. (1996) Cytology, Genetics, Evolution and Plant Breeding. Rastogi Publication, Meerut, India.
- 10. Hays, K.K. Immer, F.R. and Smith, D.C. (1985). Methods in plant breeding .Tata McGraw Hill. Newyork.
- 11. Neal.C.Stopskopf. (1999). Plant Breeding Theory & Practices. Scientific Publishers, Jodhpur.
- 12. Sharma J R (1994). Principles and practices of Plant Breeding. Tata McGraw-Hill Publishers
- 13. Sing B. D. (1996) Plant Breeding and Evolution.
- 14. Singh B D (1996). Plant Breeding: Principles and methods. Kalyani Publications Sinha, U and Sinha U., (1976). Cytogenetics, Plant breeding and Evolution. Vikas pub & Co, New Delhi.
- 15. Singh, B.D. 1996. Principles of plant breeding. Oxford IBH. New Delhi.
- 16. Singh, B.D. 2001. Plant Breeding, Principles and Methods. Kalyani Publications, , New Delhi
- 17. Sinha, U and U.Sinha, 1976. Cytogenetics, Plant breeding and Evolution. Vikas pub & Co, New Delhi.
- 18. Swaminathan, M.S, P.K.Gupta and V.Singa. (1983). Cytogenetics of crop plants. Macmillan India Ltd, New Delhi.

	SCT-4.1 PLANT BIOTECHNOLOGY	48 hrs
Course obj	ectives:	
• To t	rain the students in the aspects of innovative applications and techniques	
in t	issue culture to conserve endemic, endangered plants and improve the	
qual	ity of the economically important plants.	
• To	learn the recent advances in genetic engineering and production of	
tran	sgenic plants	
Dessible on	taamaa	
Possible ou	tucomes:	
Systematic	training given in the different branches of applied biotechnology will	
enhance the	e confidence in students to take up entrepreneurial ventures in developing	
bio tagged	products, and provide services in national and multinational industries	
dealing with	h bio utility and bio resource management.	
	Plant tiggue gultures Scone and Importance of plant tiggue gulture	
Unit-I	Madia composition and types cyclents for arguments	8hrs
	Media composition and types, explants for organogenesis,	
	somacional variation and cell line selection, production of naploid	
	plants and homozygous cell lines. Micro propagation, somatic	
	embryogenesis, protoplast culture and somatic hybridization.	
	Selection and maintainance of cell lines, cryopreservation,	
	germplasm collection and conservation, plant tissue culture	
	certification.	
[]nit_II	Plant transformation techniques: Mechanism of DNA transfer – Agro	Shrs
01111-11	bacterium mediated gene transfer, Ti and Ri plasmids as vectors, role	01115
	of virulence genes; design of expression vectors; 35S promoter,	
	genetic markers, reporter genes; viral vectors and binary vectors.	
	Direct gene transfer methods-particle bombardment, electroporation	
	and microiniection. Binary vectors.	
	Metabolic engineering of plants: Plant cell culture for the production	
Unit-III	of useful chemicals and secondary metabolites (Hairy root culture	8hrs
	Biotransformation Elicitation) - nigments flavonoids alkaloids:	
	mechanism and manipulation of shikimate nathway Commercial	
	production of anzymes biodegradable plastics therapeutic proteins	
	adible vegeines and antibiotics using transgenia technology	
	Plant Development. Plant another second terminology.	
U nit-IV	Plant Development: Plant growth regulators- auxins, gibberenins,	6hrs
	cytokinins, abscicic acid and acetylene. Biological nitrogen fixation,	
	importance and mechanism. Biofertilizers- production, VAM,	
	<i>Rhizobium, Azotobacter</i> , Mycorrhiza, Actinorhiza, Vermicomposting	
	technology and Biopesticides.	
Unit-V	Gene Manipulation Technology: Crop improvement, productivity,	10hrs
	performance and fortification of agricultural products – Bt cotton, Bt	101115
	brinjal. Herbicide resistance, viral resistance, bacterial resistance,	
	fungal resistance crops. Golden rice and transgenic sweet potato.	
	status of transgenic plants in India and other countries, Ethical issues associated with GM crops and GM food; labelling of GM plants and products. Importance of integrated pest management.	
---------	--	------
Unit-VI	Post-harvest technology: RNAi and antisense RNA technology for extending shelf life of fruits and flowers (ACC synthase gene and polygalactoronase); delay of softening and ripening of fleshy fruits (tomato, banana, watermelons). Post-harvest protection of cereals, millets and pulses.	8hrs

References

- 1. Alan Scragg, 2005. Environemntal Biotechnology. II Edition. Oxford University Press. New York.
- 2. Bernard R. Glick and Jack J. Pasternak, 2001. Molecular Biotechnology 2nd edition, ASM press Washington DC.
- 3. Brown, C.W, I.Campbell and F.G. Priest, 1987. Introduction to Biotechnology. Blackwell scientific publications, Oxford.
- 4. Chawla, H.S, 2000. Introduction to Biotechnology. Oxford & IBH Publishing Co Pvt. Ltd, New Delhi.
- 5. Chrispeels M.J.et al. 1994. Plants, Genes and Agriculture-Jones and Bartlett Publishers, Boston.
- 6. Gamborg O.L. and Philips G.C.Plant cell, tissue and organ culture (2nd Ed.) Narosa Publishing House. New Delhi.1998.
- 7. Gistou, P and Klu, H.Hand book of Plant Biotechnology (Vol. I & II).John Publication.2004.
- 8. Gupta, P.K. 2003. Biotechnology and Genomics, Rastogi Publisher, Meerut.
- 9. Halford N.G. Plant biotechnology: current and future applications of genetically modified crops. John Wiely Publishers.2006.
- 10. Hammond, J, P. Mc Garvey and V. Yusibov . 2002. Plant Biotechnology –New products and applications, Springer Verlag, Heidelberg.
- 11. Hammound J, P McGravey&Yusibov.V. Plant Biotechnology, Springer verlag. 2000.
- 12. Hans-Peter Schmauder. 2005. Methods in Biotechnology. Taylor & Francis. London.
- 13. Heldt. 1997. Plant Biochemistry and Molecular Biology. Oxford and IBH Publishing Co. Pvt.Ltd. Delhi.
- 14. Ignachimuthu, S.1997. Plant Biotechnology, Narosa publishing House, New Delhi.
- 15. John.A.Thomas. 2004. Biotechnology and safety Assessment. II Edition. Taylor & Francis. London.
- Kirakosyan A and Kaufman P.B.Recent Advances in Plant Biotechnology (1st Ed.).Springer Publishers. 2009.
- 17. Kumar, H.D. 2004. A textbook on Biotechnology 2nd edition, Affiliated East West press Pvt., Ltd., London.
- 18. LydianeKyte and John Kleyn. Plants from test tubes. An introduction to Micro propagation (3rd Ed.). Timber Press, Portland. 1996.
- 19. Marx, F.L, 1989. A revolution in Biotechnology. Cambridge University press, New York.
- 20. Murray D.R. Advanced methods in plant breeding and biotechnology.Panima Publishing Corporation.1996.

- 21. NickoloffJ.A.Methods in molecular biology, Plant cell electroporation and electrofusion protocols-Humana press incorp, USA. 1995.
- 22. Ranat, K.G. and J.M. Merillon. 2003. Biotechnology: Secondary Metabolites. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi.
- 23. Rani Pathak. 2007. Introduction to Biotechnology. Atlantic Publishers & Distributors (P) Ltd., New Delhi.
- 24. Rastogi, S.C. 2007. Biotechnology- Principles and Applications. Narosa Publishing House, New Delhi.
- 25. Sawahel W.A. Plant genetic transformation technology. Daya Publishing House, Delhi.1997.
- 26. Slatu A .The genetic manipulation of plant. Oxford University Press.2003.
- 27. Sridhar, S. 2005. Enzyme Biotechnology, Dominant publishers and Distributors, New Delhi.
- 28. Trevan M.D, S. Boffey, K.J Goulding and P.Stanburg, 1977. Biotechnology: The Biological principles. TATA McGraw Hill, New Delhi.
- 29. Walker, J.M. and R. Repley. 2006. Molecular Biology and Biotechnology. IV Edition. Panima Publishing Company, New York.

	SCT -4.1 ETHNOBOTANY AND IPR	48hrs
Course obje	ectives:	
• The main objective of this course to explain the basic concepts of		
ethnobotany and the geographical distribution of the most important		
pharmaceutical plants.		
• To make the students recognize the ethnobotanically important plants		
species.		
• To e	xplain which parts of these plants are important for usage.	
• To fa	amiliarize the students with the issues of intellectual property rights and	
dispu	ites arising due to biotechnological patents.	
Dessible and		
The sty 1-	ill overnoon the historical development of other hotener. Circuit for the	
The study will express the historical development of ethnobotany. Give information		
	and and their natural naturals and cultivated lands and explain in which	
Students These	e plants are used. Impart knowledge on various tribal groups of India.	
Students will know and/or identify important plant species. Get knowledge on		
important pi	ant families, their characteristics and its economic importance. Students	
will become	aware of blosalety, bloetings and IPK.	
Unit-I	Ethnobotany. Introduction, concept, scope and objectives,	12hrs
	Ethnobolany as an interdisciplinary science. The relevance of	
	Major and minor athric groups on Tribala of India and their life	
	styles. Expect Va athric groups of Tribals of India, and their fife	
	Styles. Forest Vs. enfine groups, Flants in Thoar me with reference to	
	Magico-religious rituals and social customs.	
	Sacied gloves.	
Unit-II	A paient Literature d) Archaeological findings a) temples and	10hrs
	c) Ancient Enerature d) Archaeological findings e) temples and	
	Sacred places 1) Protocols.	
Unit-III	Medico-ethnobotanical sources in India with special reference to	12hrs
	Karnataka: Tribals Vs. Agriculture: Shifting, Podu and Jhum	
	cultivation. Role of ethnic groups on surrounding environment. Crop	
	Genetic sources. Endangered taxa and forest management	
	(participatory forest management).	
Unit-IV	Ethnobotany and legal aspects. Ethnobotany as a tool to protect	14hrs
	interests of ethnic groups. Sharing of wealth concept with few	
	examples from India. Ethnobotany as a source (recent) of already	
	known drugs: a) Withania as an antioxidant and relaxant b)	
	Sarpagandha in brain ailments c) Becopa and Centella in epilepsy	
	and memory development in children d) Phyllanthus fraternus in	
	diabetic and viral jaundice e) Artemisia as a powerful cerebral	
	antimalarial agent and its possible use in tuberculosis. Biopiracy,	
	Intellectual Property Rights and Traditional Knowledge.	

References:

- Plant Physiology, biochemistry and molecular biology. David, T: Dennis and Davis Turnip. Longman.
- 2. Scientific and technical U.K. 1990.
- 3. Plant Biochemistry Voet, D and Voet J.G. International
- 4. Outlines of biochemistry. 5th edition Con E.E. and Stump P.K. 1995. Willey
- 5. Principles of biochemistry, Lehnenger, A.L. 1982 CBS Publication
- 6. Biochemistry, Strayer W.H. 1976. Foreman Company.
- 7. Introduction to Plant Physiology. Willium G. Hopkins and Norman P. A. Huner
- 8. Plant Physiology. Lincoln Taiz and Eduardo Zeiger. International Edition
- 9. Plant Biochemistry. P.M. Dey and J.B. Harborne
- 10. Plant Biochemistry. Hans-Walter Heldt
- 11. Physicochemical and Environmental Plant Physiology. Park S. Nobel.

HCP-4.1 PLANT PHYSIOLOGY

- 1. Study of permeability of membranes using different concentration of organic solvents
- 2. Determination of osmotic potential of cell sap by plasmolytic methods
- 3. Separation of chloroplast pigments by solvents methods
- 4. Determination rate of photosynthesis using different wavelengths
- 5. Determination of RQ of carbohydrates, fats and proteins
- 6. Detection of carbohydrates, fats, oils, alkaloids, enzyme activity in plant tissue
- 7. Study of plant movements
- 8. Physiological action of plant hormones
- 9. Study of inorganic elements in plant tissues/ash
- 10. Experiments on stress physiology.

SCP-4.1 PLANT BREEDING

- 1. Visiting a plant breeding station to familiarize with breeding programmes.
- 2. Hybridization techniques, selfing and crossing techniques.
- 3. Technique of emasculation; Techniques in selfing and hybridization
- 4. Different types of layering (Simple layering, tip layering, serpentine layering, Air layering, mound layering).
- 5. Grafting Whip (or splice), cleft, bark, wedge, stone and approach grafting.
- 6. Budding T-budding, Inverted T-budding and chip budding.
- 7. Pollen viability; germination test and TTC test.
- 8. PCR Technique with known primers.

SCP-4.1 PLANT BIOTECHNOLOGY

- 1. Isolation of plasmids DNA from
- 2. Preparation of tissue culture media and organ culture (shoot tips, leaf)
- 3. Anther culture and haploid production
- 4. Isolation, culture and fusion of protoplast
- 5. Production of synthetic seeds from explants

6. Extraction and quantification of leg haemoglobin from root nodules (Rhizobium) of leguminous plant

7. Agro bacteria culture and transformation of explants

SCP-4.1 ETHNOBOTANY AND IPR

- 1. A visit to a Tribal area to collect data
- 2. Listing of Crude drugs and their identification (little known drugs only).
- 3. A visit to nearby Sacred Groves.

	OE-4.1 MEDICINAL BOTANY	48hrs
Course obj	ectives:	
• To (enlighten the students on the sources and role of plants in meeting the	
basic demands of the human.		
• To appreciate how plants have influenced medicine throughout human		
histo	pry.	
• To r	reveal the range of products and their novel usage in human life.	
Possible ou	itcomes:	
The study	explores the uses of plants as medicine by traditional indigenous	
approaches	Student will understand different systems of medicine and their uses.	
Students wi	ill be able to explain how current medicinal practices are often based on	
indigenous	plant knowledge. Students will get introduced to different perspectives	
on treating	ailments.	
TL '4 T	History, Scope and Importance of Medicinal Plants. Indigenous	101
Unit-I	Medicinal Sciences; Definition and Scope-Ayurveda: History, origin,	12nrs
	panchamaha bhutas, sapta dhatu and tridosha concepts, Rasayana,	
	plants used in ayurvedic treatments, Siddha: Origin of Siddha	
	medicinal systems, Basis of Siddha system, plants used in Siddha	
	medicine. Unani: History, concept: Umoor-etabiya, tumors	
	treatments/ therapy, polyherbal formulations.	
IInit_II	Conservation of endangered and endemic medicinal plants.	1/hrs
0111-11	Definition: endemic and endangered medicinal plants, Red list	141115
	criteria; In situ conservation: Biosphere reserves, sacred groves,	
	National Parks; <i>Ex situ</i> conservation: Botanic Gardens,	
	Ethnomedicinal plant Gardens. Propagation of Medicinal Plants:	
	Objectives of the nursery, its classification, important components of	
	a nursery, sowing, pricking, use of green house for nursery	
	production, propagation through cuttings, layering, grafting and	
	budding.	
Unit-III	Sources of financial aids for medicinal plant cultivation: Aims and	12hrs
	objectives, Functions and activities of the board, Schemes and	
	Projects for Financial assistance, Funding of projects; Procedure for	
	processing project proposal for approval, Implementation and	
	monitoring.	
Unit-IV	Ethnobotany and Folk medicines. Definition; Ethnobotany in India:	10hrs
	Methods to study ethnobotany; Applications of Ethnobotany:	
	National interacts, Palaeo-ethnobotany. Folk medicines of	
	ethnobotany, ethnomedicine, ethnoecology, ethnic communities of	
	India. Application of natural products to certain diseases- Jaundice,	
	cardiac, infertility, diabetics, Blood pressure and skin diseases.	

References

- 1. Trivedi P C, 2006. Medicinal Plants: Ethnobotanical Approach, Agrobios, India.
- 2. Purohit and Vyas, 2008. Medicinal Plant Cultivation: A Scientific Approach, 2nd edn. Agrobios, India.
- 3. Yoganarasimhan S N. Medicinal Plants of India- Vol 1- Karnataka, Interline Publishing Pvt. Ltd.

OE-4.1 AESTHETIC BOTANY		48 hrs
Course objectives:		
• To learn about Phytogeographical regions of India.		
• To make students appreciate the Aesthetic beauty of beautiful plants and		
their	value in nature.	
• To reveal the cultivation methods of aesthetic plants.		
• To le	arn about various types of gardening and maintenance of the same.	
Possible out	comes:	
Students will	know about the floristic regions and plant formation of the planet. The	
study of aes	thetic botany gives knowledge about the art, science, technology and	
business of a	proving plants. The course will make the learners skilled in cultivation	
of plants. St	idents will get familiar with the aesthetic value and the importance on	
improving th	e aesthetics of the surrounding.	
Ilnit I	Phytogeography: Climate and Vegetation of the world, Floristic	Q hwa
Unit-1	regions of the world. Phytogeographical regions of India; Endemism;	01115
	Concept of hotspots, hot spots of the world. Forest types of India	
IInit-II	Gardening	12hrs
	Garden Design: Scope and objectives of gardening; Style of gardens	121115
	(Formal, Informal); Types of gardens (English, Mughal and	
	Japanese)	
	Components of garden; Planning of outdoor gardens- Small,	
	Residential, Larger Home Garden, Roof Garden, Terrace Garden,	
	Industrial garden, Housing complex, Indoor gardening	
	Garden Features and Ornamentation: Water, Garden pool, Stream,	
	Waterfall, Fountain, Rocks, Roads, Walks, Pavements and Steps,	
	Walls fences and Gates, Hedges, Edges, Arches, Statues, Towers.	
Unit-III	Floriculture	14hrs
	Nursery production and management: Scope, Site, Soil, Environment,	
	Layout, Manure, Fertilizers, Maintenance, Garden tools, Culture and	
	Garden calendar, Types, Nursery beds, Pest & Disease management.	
	Propagation of ornamental plants by seeds, bulbs, layering, cuttings,	
	gratting, budding & tissue culture.	
	Creamontal forms and their propagations hashagaous paramials	
	Annuals & Biennials: Important Gamera and Spacing their	
	importance in garden designs	
	I andscaning	
Unit-IV	Landscape Design: Definition objectives and scope Landscape	14hrs
	elements of construction and designing of Residential Commercial	
	Bungalow, Public area, Hotel, Educational Institute and religious	
	places Palms and Cycas: Characteristics, propagation, culture, pest	
	r, propugation, culture, post	

and disease, importance and uses, genera and species of palms and	
Cycads. Bamboo and conifers: Genera, species and varieties	
Lawns & Grasses: Planting methods, maintenance, pest management	
Ornamental succulents, Cacti	
Polyhouse technology: Scope and objectives of floriculture.	

References

- 1. Randhawa GS and Mukhopadhyay A. 2004. Floriculture in India. Allied Publishers Pvt. Limited. 72
- 2. Swarup Vishnu. 2003. Garden Flowers. National Book Trust
- 3. Hartmann HT, Kester DE, Davies FT and Geneve RL. 2002. Plant Propagation Principles and Practices. Prentice Hall India Ltd.
- 4. Royal Horticultural Society"s Encyclopedia of Gardening.

Karnataka State Akkamahadevi Women's University. Vijayapura

M.Sc. Degree Examination, Nov/ Dec 2019

Subject: Botany (CBCS)

Theory Model Question Paper

Time: 3 Hrs

Max. Marks: 70

Instructions to the candidates: Answer all the questions; Draw diagrams wherever necessary

I. Answer any FIVE of the followings	5X2 = 10
1.	
2.	
3.	
4.	
5.	
6.	
7.	
II. Write in brief any SIX of the followings	6X5 = 30
8.	
9.	
10.	
11.	
12.	
13.	
14.	
15.	
III. Write in detail any THREE of the followings	3X10 = 30
16.	
17.	
18.	
19.	
20.	

Karnataka State Akkamahadevi Women's University. Vijayapura

M.Sc. Degree Examination, Nov/ Dec 2018

Subject: Botany (CBCS)

Practical Model Question Paper

Time: 4 hrs

Max. Marks: 70

Q. I Major Question	20 marks
Q. II Minor Question	18 marks
Q. III Comment on	3X4=12 marks
Q. IV Viva-voce	10 marks
Q. V Journal /Record	10 marks

Enclosure- 3

Courses that have activities

HCP-3.2: BOTANICAL TOUR AND HERBARIUM PREPARATION

Course objectives:

- To conduct field trip outside the campus area/ District, a minimum of 3 to 4 days to understand floristic diversity of Angiosperms and to collect specimens from various agroclimatic conditions for the preparation of the Herbarium.
- Compilation of field notes and preparation of herbarium sheets of the plants at least 20 abundant wild or cultivated plants.

Possible outcomes:

The course will give an expertise in understanding characteristic features of various plant families. Students will be able to give description of various species of a genus; location of key characters and preparation of keys at generic level. The species recorded from the field should be submitted as herbarium specimens.

Contents: Botanical tour, plant collection, identification and documentation, methods of collecting plants, herbarium specimens, herbarium preparations and submission.

HCPW-4.2: PROJECT WORK

Course objectives:

- The objective of this advanced course is to provide students with a hands on training in specialized area of plant sciences.
- To enable the student to develop deeper knowledge, understanding, capabilities and attitude in the context of research.
- To know about selection of research topic.
- To enable the student towards collection and compilation of literature.

Possible outcomes:

Students will be able to designing the experiment with clear objectivity and demonstrate the ability to collate and critically assess/interpret data. Students will acquire knowledge on techniques and tools of research, quantitative and qualitative data analysis and interpretation of data in the perspective of existing knowledge. Students will be able to effectively communicate knowledge in a scientific manner and provide recommendations based on research findings.

Contents: The student will be reading and analysing the published information in the chosen area of plant science under direct mentoring of a faculty member and will participate in research activity.

Enclosure- 4

KARNATAKA STATE AKKAMAHADEVI WOMEN'S UNIVERSITY, VIIAYAPURA

(Formerly: Karnataka State Women's University)

Prof. G. G. Rajput Chairman, BoS Department of Botany Jnanashakti Campus Toravi, Vijayapura – 586 108

Date: 30/06/2020

BoS (PG) BOTANY

Proceedings of the meeting of BoS (PG) in Botany subject held through circulation from 03-06-2020 to 15-06-2020.

The members present:

1. Dr. G.G. Rajput, Dean, Faculty of Science and Technology, KSAWUV,

2. Dr. K. N. Amruthesh, Dept. of Botany, University of Mysore, Mysore

3. Dr. Prashanth S J, Coordinator, Dept. of Botany, KSAWU, Vijayapura.

Chairman Member

Member An

Agenda 1: Review of the existing syllabus under CBCS scheme for corrections (Credits, title and content modification enclosed).

Resolution: The board reviewed the existing MSc (Botany)I-IV semester syllabus. The board made necessary changes/corrections in text, credit allocation, marks for practical course and. The board also resolved to approve the updated M.Sc (Botany) syllabus w.e.f. 2020-21 and onwards.

Agenda 2: Preparation and approval of Panel of Examiners for the year 2020-21. Resolution: The board prepared and approved the panel of examiners for Botany for the academic year 2020-21.

Agenda 3: Modification of question paper pattern for M.Sc. Botany practical (I to IV Sem) examination as per the CBCS - itern.

Resolution: The board revised that marks for practical course and also revised question paper pattern for practical exam.

(Prof. G. G. Rajput) Chairman, BoS (PG) in Boatny

Enclosure- 5

DR. PRATIMA. H Lecturer Department of Botany Karnataka State Akkamadevi Women's University, Vijayapura-586 109

Phone: Off. (08352)-229121 Mobile: 7760546082; 9449274817 E-mail: Pratimakalsanksanki@gmail.com

Certificate

I hereby certify that the project work " SURVEY ON WEED DIVARSITY OF GRAPE CROP FIELDS OF VIJAYAPURA." submitted by Miss. PIYANKA A.G. Miss. PRIYANKA NATEEKAR, Miss. SUHASINI for partial fulfillment of the degree of "Master of Science" in Botany to Karnataka state Akkamahdevi Women's University, Vijayapura, is the project work done by them in the Department of Botany, Karnataka state Akkamahadevi Women's University, Vijayapura

I further, certify that the research work done by them is original and has not been submitted for any degree either in part or in full to any other university.

2.4

Place: Vilayapura Date: 13-19-2021 Callen Ca

Certificate

I hereby certify that the project work "SCREENING OF HEPATOPROTECTIVE AND ANTIOXIDANT POTENTIAL OF PHYLLANTHUS GENUS: A REVIEW" submitted by Miss. ANITA SHIRAGUPPI Miss. PRIYADARSHINI JOOJAGAR, Miss. SUDHARANI S CHEERALADINNI for partial fulfillment of the degree of "Master of Science" in Botany to karanataka state Akkamahdevi Women's University, Vijayapur, is the project work done by them in the Department of Botany, Karanataka State Akkamahadevi Women's University, Vijayapur.

I further, certify that the research work done by them is original and has not been submitted for any degree either in part or in full to any other university.

Place: Vijayapura Date: 12-10-2021 DR. PRATIMA. H Guide Department of Botany Kamataka State Akkamahadevi Women's University Vijayapura

Co ordinator

Dept. of Post Graduate Studies & Research in Botany Kasacaka Gate Attanuhadon Wonen's University, Wayapura

. 10° à

Dr. Babu R. Lamani Coordinator Department of Botany

Karnataka State Akkamahadevi Women's University, Vijayapur. Email: baburl.rl@gmail.com

CERTIFICATE

This is to certify that the dissertation entitled "Floristic Diversity of Almatti Gardens" submitted by Mrs. Vaibhavi for the partial fulfilment of award of the Degree of Master of Science in Botany, Karnataka State Akkamahadevi Women's University, Vijayapur is carried out by her in the Department of Botany under the guidance and supervision of Dr. Arati Laddimath, Department of Botany, KSAWU, Vijayapur. The subject on which the dissertation has been prepared is her original work.

Place: Vijayapura

Date: 13 10 202

Run 1012 3.10.2

Dept. of Botany Www. Botany W.

(Coerdinator) Department of Botany

Co-ordinator Rept. of Post Graduate Studies & Research In Botany Karvinda State Adamahaderi Women's University, Vijayapura.

KARNATAKA STATE AKKAMAHADEVI WOMEN'S UNIVERSITY VIJAYAPUR, KARNATAKA, INDIA

DR. FIRDOSE R. KOLAR

Lecturer Department of Botany Karnataka State Akkamohadevi Women's University, Vijayapura — 586 109. India. one : Off. (08352) – 229121 obile : 8277284666 - mail : firdose.kousar@gmail.com

CERTIFICATE

This is to certify that; the thesis entitled "Review on role of ornamental plants as Air purifiers" is being submitted here with for the partial fulfillment of the requirement for the Degree of Master of Science in Botany of Karnataka state Akkamahadevi Women's University, Vijayapura. The work reported in this thesis is based upon the results of the literature survey carried out by Ms. Asma Pathan, Roopa M Masalaji & Rukhsar Mutagi under my supervision and guidance. To the best of my knowledge and belief the work embodied in this thesis has not formed earlier the basis for the award of any degree or similar title of this and for any another university or examining body.

Dr. FIRDOSE R. KOLAR (Project Guide)

Place: Vijayapura Date: 13/10/2021

2 101 2 Forwarded through Co-ordinator 13.10.2

KARNATAKA STATE AKKAMAHADEVI WOMEN'S UNIVERSITY

VIJAYAPUR, KARNATAKA, INDIA

DR. FIRDOSE R. KOLAR Lecturer Department of Botany Karnataka State Akkamahadevi Women's University, Vijayapura — 586 109. India.

Phone : Off. (08352) – 229121 Mobile : 8277284666 E – mail : firdose.kousar@gmail.com

CERTIFICATE

This is to certify that; the thesis entitled "A REVIEW OF PLANTS USED IN THE TREATMENT OF RESPIRATORY DISORDERS" is being submitted herewith for the partial fulfillment of the requirement for the Degree of Master of Science in Botany of Karnataka state Akkamahadevi Women's University, Vijayapura. The work reported in this thesis is based upon the results of the literature survey carried out by Ms. ASMA KALBURGI, Ms. SADEEQUA MUSHRIF and Ms. ZEBA SULTANA MULLA, under my supervision and guidance. To the best of my knowledge and belief the work embodied in this thesis has not formed earlier the basis for the award of any degree or similar title of this and for any another university or examining body.

Place: Vijayapura Dr. FIRDOSE R. KOLAR Date: 13) (Project Guide) Forwarded through Co-ordinator 3.10-21

Dr. Babu R. Lamani Coordinator

Department of Botany

Karnataka State Akkamahadevi Women's University, Vijayapur. Email:baburl.rl@gmail.com

CERTIFICATE

This is to certify that the dissertation entitled "Floristic Assessment of Dakshina Kashi Mudanoor (Sacred grove)" submitted by Miss. Akshata Konnur for the partial fulfilment of award of the Degree of Master of Science in Botany, Karnataka State Akkamahadevi Women's University, Vijayapuris carried out by her in the Department of Botany under the guidance and supervision of Dr. Arati Laddimath, Department of Botany, KSAWU, Vijayapura. The subject on which the Project has been prepared is her original work.

Place: Vijayapura

Date: 13-10 - 2021

(Coordinator)

Department of Botany Co-ordinator

Dept. of Post Graduate Studies & Research in Botan Kanatate Bute Aktamakadevi Women's University, Vijayapura.

KARNATAKA STATE AKKAMAHDEVI WOMEN'S UNIVERSITY VIJAYAPURA DEPARTMENT OF BOTANY

Jnanashakti campus, Torvi, Vijayapura, Karnataka 586108

Shankar Mavinamar. M.Sc. KSET. CSIR NET. GATE. Guest Lecturer

Place: Vijayapura

Fo

The (

Date: 11/10/2021

ordinator

through

Email: shankarm050@outlook.com Tele: +91 9482402408

Certificate

On the basis of declaration submitted by Ms. Akshata Kannur., Ms. Anuradha Pawar., Ms. Shweta Patil., and Ms. Spoorti Kulkarni. I hereby certify that the project titled "STUDIES ON BIOLOGICAL CONTROL OF DRY ROOT ROT OF CHICKPEA" which is submitted to the Dept. of Botany, KSAWU Vijayapura. in partial fulfillment of the requirements of the award of the degree of Master of Science, is an original contribution of project work carried by them under my guidance and supervision.

To the best of my knowledge, this work has not been submitted in part or full for any Degree or Diploma to this University or elsewhere.

C HODBILLED

Shankar Mavinamar Supervisor

CERTIFICATE

This is to certify that this project dissertation entitled "FLORISTIC DIVERSITY OF ROYAL PALACE AND IT'S SURROUNDING AREA JAMAKHANDI, BAGALKOT DISTRICT, KARNATAKA STATE, INDIA. It is being submitted here with for the partial fulfillment of award of the Degree of master of sciene in Botany, Karnataka State Akkamahadevi women's University Vijayapura. The work reported in this report is based upon the results of the original work carried out by miss Manjula Dhasyal and miss Anushree chougala under my supervision and guidance.

Dr.Arati Laddimath M.Sc,M.Ed,M.Phill,Ph.D

Place: Vijayapura

Date: 12/10/2021

The Co-ordinator

The Co-ordinator

KSAW University, Dept of

Post Graduated Studied and Research in

Botany, Vijayapura.

Project Guide Dept -21

·10.2)

CERTIFICATE

KARNATAKA STATEAKKAMAHADEVI WOMEN'S UNIVERSITY, VIJAYAPURA CERTIFICATE

This is to certify that the project entitled "" submitted byMiss.Shalomsofiya.M (Reg no:BO191016)Mrs.BhuvaneshwariPatil(Reg no BO191008) "DOCUMENTATION OF ECO-FRIENDLY PLANT SPECIES" to Karnataka State Akkamahadevi Women's University during the period from 2020 to 2021. The project report has not formed the basis for the award of any degree, diploma, associateship and fellowship or other similar title to any

candidate of this or any other university.

Date : Place: Vijayapura Dr. Babu R.L. **Dr. AratiLaddimath Co-ordinator** Project Guide Department of Botany Department of Botany Wom KSAWU, Vijayapura. KSAWU, Vijayapura an